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Abstract

It is often impractical or expensive to sample according
to the classical sequential scheme, that is, one observa-
tion at a time. Sequential planning extends and gener-
alizes the “pure’” sequential procedures by allowing to
sample observations in groups. At any moment, all the
collected data are used to determine the size of the next
group and to decide whether or not sampling should be
terminated. We discuss optimality of sequential designs
taking into account both the variable and the fixed cost
of experiments. Some general guidelines for optimal se-
quential planning are established. It is shown that the
total cost of standard sequential procedures can be re-
duced significantly without increasing the loss. Specific
types of sequential plans are introduced and compared,
some existing plans are modified and improved.




Main principle

Based on the collected data, we ...

e Non-sequential (retrospective) analysis

. decide what to report

e Sequential (pure sequential) analysis

Sample one observation at a time

when to stop sampling

» GEaeE { what to report

e Sequential planning

Sample a group of observations at a time

how to sample
. decide ¢ when to stop sampling
what to report



For example...

Hypothesis Testing

Based on X1,...,Xn, we ...

e Non-sequential (retrospective) analysis

. accept or reject

e Sequential (pure sequential) analysis

. accept, reject, or collect Xn+1

e Sequential planning

. accept,
reject,
collect X, 41,
collect (X,41, Xp42),
collect (Xn-|-17 Xn+27 Xn+3);
collect (X, 41, Xp42, Xp43, Xn44), €tc.

3



Risk Function

e Non-sequential (retrospective) analysis

Risk = E(loss)

e Sequential (pure sequential) analysis

Risk = E(loss + cost of observations)

e Sequential planning

Risk = E(loss + cost of observations

-+ cost of sampled groups)



Formally ...

Xk: = (Xl, . e 7Xk) = data
Ng = size of the 15 group, const or random

Nj_1 = Nj_1(Xp;_,) = size of the jth group,
after observing XM]._1

My, = Z;?:l N

Non-randomized sequential plan

N = {N(k) - xk - {0,1,2, }}
data — size of the next group

Randomized sequential plan

N = {P(k) L XK — {po,p1,p2,---},2pj — 1}
data — distribution on {0,1,2,...}

~
[

min{j > 1|N; = 0}
total number of sampled groups
“stopping time”



Decision theory

L(6,6) = loss function

¢ — cost of each observation standard
a — fixed cost of each group simplification
f T
R(O,N) = E*{L(0,8)+c > N;+aT
\ J=1
( T
= EX{L(0,8)+ > (cN;+a)
\ J=1

risk function

w(-) - the prior distribution of 6

r(w,N) = ETR(6, N) = Bayes risk

For a randomized plan,

R(6,N) = EXE{P} {L(e, ) + T (eN; + a)}
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Rather standard ...

A plan N is R — better than a plan N if

R(6,N) < R(0,N) for any 6 € ©,
R(0,N) < R(6,N) for some 0 € ©.

A plan N is admissible, if there is no plan N
that is R-better than V.

A plan N is mintmax if

sup R(6,N) < sup R(6, N)
0 0
for any plan N.

A plan N is preferred to a plan N if
r(w,N) < r(m,N)

A plan N is Bayes, if
r(m, N) < r(m, N)
for any plan N.



T he question is ...

How to choose Nj(XMj)?

Examples

R. Lewis, D. Berry (JASA, 1994) and many
others -

NjENO

L. Hayre (JRSS-B, 1985) -

number of observations

N; ~ pE needed to cross the
stopping boundary
[expectation-based plan]

N; =~ such that P(cross boundary) =~ p

[quantile-based plan]
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Examples, continued

D. Assaf (Annals of Statistics, 1988)

N; minimize P(false alarm) under the fixed av-
erage sampling rate (“dynamic sampling” for
change detection)

N. Schmitz (Springer-Verlag, 1993)

Existence of Bayes sequential plans

M. Roters (Sequential Analysis, 2002)

Extension to continuous time



Examples ... the least that can be done

Conservative plan

number of observations
N](O) = min needed to cross the
stopping boundary

Mconserv — Mpure seq
where T is the final sample size

['T1-conservative plan

Choose N}m) = [NJ(O),N](O) + m]

M —conserv < Mpure seq +m

They solve a variational problem

Example: Bernoulli(@); test g vs 1 —60g. There

m(m—|—1)_1 _
are 27 2 m~-conservative plans. One can

find the optimal plan.
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General guidelines

Let N be a randomized plan. Then there ex-
iIsts a non-randomized plan whose Bayes risk
does not exceed the Bayes risk of N.

(There exist non-randomized Bayes plans)

For any sequential plan N, there exists
a sequential plan N* such that

o N*(Xq,...,Xg) = N*(k, Sp(X1,...,Xg)),
(depends on the collected data only through
the sufficient statistic)

o r(m,N*) < r(m,N)

(There exists a Bayes sequential plan that is
based on the sufficient statistic)

11



Guidelines

Therefore ... (corollaries)

e In optimal sequential planning with iid ob-
servations, the choice of each group size
is independent of the order in which the
collected data were obtained.

e (Irrelevance of past costs) In optimal se-
quential planning, the choice of each group
Size is independent of the amount already
paid in sampling costs for the collected
groups of observations.
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SPPRT

Following the guidelines...

Sequentially Planned
Probability Ratio Test (SPPRT)

TeStH0:9=90VSHA29:91.

Having observed Xi,..., Xy, compute

_ F(X1,.., Xnl61)
(X1, Xnl00)

n

A, B - given constants such that B<1< A
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SPPRT

If A\p, > A, stop and reject Hg
If A\, < B, stop and do not reject Hg

If A, € (B, A), take another sample,

Xnt1s o Xp b N(Ap)

where N(Ay) is the size of the next sample,
having observed X1,..., Xy,

N(Xn) N(An)

0 if A\p & (B, A)
> 0 otherwise
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Agreement
with the Sufficiency Principle

SPPRT

Nn

f(X1,..., Xnl01)

f(X1,...,Xnl00)

g(Sn(Xn)

el)h(Xn)

g(Sn(Xn)
g(Sn(Xn)

HO)h(Xn)
01)

g(Sn(Xn)

0o)
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Risk components

Optimizing ...

Risk = E(loss + cost of observations -+ cost
of sampled groups)

First risk component (loss).
Error Probabilities and Stopping Boundaries

o = Pgo {/\MT > A} — prob. of Type I error

B = Py, {/\MT < B} = prob. of Type II error

Result:

Hence:
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Risk components

Second risk component
Total sample size, E(My)

e Pure sequential plan
Eo(Mr) = ARL(6)

_(1-0Cc@)InA+0C(0)InB
- f(xael)
f(xaeo)

E9|n

e Conservative plan

Ey(Mr) = the same, of course

e m-conservative plan

Ey(Mp) = differs by at most m
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Risk components

Third risk component
Expected number of groups, E(T)
QEICRUCEICRTEREIL)

e SPRT, E(T) is linear

T Esprt(T |Hq) _ 1
A—o0,In A=0(In B) In A K(61,00)
E T |\H 1
im sprT(T |Hp)

B—0,In B=0(In A) | In B| -~ K(6p,01)
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Risk components, E(T)

e Conservative SPPRT,
E(T) is logarithmic!

Espprr(T|Hy)

1+ U/K
— |In(1 - K/U)|

(ININnA—1Ininin A) 4+ O(1),

as A — oo, AB = O(1),

Espprr(T |Hp)
. 1-I/K
~ |In(1 4 K/L)|

(Inin|B|=InInIn|B|)4+0(1),

as B — 0, AB = O(1),

where P {L < In ;E"” 21% <Ul=1.
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Risk components, E(T)

e Expectation-based, quantile-based plans

E(T) is bounded!!!

If
P{T=k+1|XM,T >k} >p

a.s., for some p > 0 and all k, then
(i) T is proper, i.e. P(T = ) = 0;

(i) E(T) < 1/p.

Applications:
- quantile-based plans

- expectation-based plans
20



SPPRT on lattice

Sequential Planning on a Lattice

Suppose that InA, = kA, ke Z
Example: Hy:0 =60 Vvs Hy:0=1—0g

Then {Nj} iSs a stationary Markov chain with

a transition probability matrix

P = {Pkn}7
Pin = P(IN Ay, = nA|In Ay, | = kD)
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SPPRT on lattice

Computation of the risk

Expected number of groups

1
1

E(T)=(I-P)~ !
1
Expected number of observations

( Np )

NBGA
E(Mp) = —P)"'| Ng.oa

\ N1

Risk

R(0,N) = EXL(6,6%) + (I — P)"1(ae + cN)
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SPPRT on a lattice

Case Study: Pediatric Research for
institutional review boards (IRB)

Need to know if a certain medication is efficient
for at least 50

Test
Hy:0>0.52 vs Hy:0<0.48

)
Hy:0 =052 vs Hy:60=0.48

Costs: $600 per IRB + $75 per trial
a=75, c¢c=600

]__
n (92} = 0.0800 = —In %
01 01

= SPPRT on a lattice with A = 0.08

23



Case Study: Pediatric Research

For a =8 =0.05, A=19 and B =1/19
= In(A) = 36A and In(B) = —36A

Plan Pure Conserv. | bth percentile
E(T) 804 45 20.2
E(M) 304 804 306
aE(T)4+cE(M) | 543,015 | 486,041 485,115
Saving (%) 0 56,974 57,900

For a =3 =0.01, A=99 and B=1/99
= In(A) =57A and In(B) = —57A

Plan Pure Conserv. | 5th percentile
E(T) 1396 54 20.2
E(M) 1396 1396 806
aE(T)+cE(M) | 942,005 | 841,417 840,923
Saving (%) 0 100,588 101,082
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Case Study: DCP Cooperative Group
Treatment Trials

National Cancer Institute:

- cost per patient in 1999 is ¢ = 3,861
- average cost of a clinical trial is a = 31,000

a=3=0.05 Pure | Conserv. | 5th percentile
E(T) 804 45 20.2
E(M) 804 804 806
aE(T)+4cE(M), min || 28.0 4.5 3.7
Saving, min 0 23.5 24.3
a= (£ =0.01 Pure | Conserv. | bth percentile
E(T) 1396 54 20.2
E(M) 1396 1396 806
aE(T)+cE(M), min || 48.7 7.1 6.0
Saving, min 0 41.6 42.7
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