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When ar e Softwar e Reliability P
Models Typically Applied? O e osios @

Ar chitectur e-Based Reliability Models
..... decisions are being made as to how to design reliability into the system

Requirements Architecture Software Unit
Formulation | 7] Design Development 7 Testi ng
Integration System OF;fr.St General
Testing [ ~| Testing | fice — 1 Availability
Application

Softwar e Reliability Growth Models
...... reliability is quantified and influences the release decision

Softwar e Reliability Growth Models
...... reliability predictions are verified
...... parameters useful for modeling reliability of next release are estimated
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Software Reliability Growth Models (SRGMs)



SRGMs: QueStionStO Answer Lucent Technologies | ")
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» What would the user-perceived failure rate of the software be if
If the software was to be released now?

» How much more testing is needed to achieve the reliability targets?

* How many faults exist in the code at the end of system test?



A Well-Known SRGM

Cumulative
Failures

God-Okumoto M odéel

M(t) =c(l- €Y

T Cumulative Test Time (days)

c = initial number of faults
d = average per-fault failure rate

t = cumulative test time, aggregated

across all installations

T = current value of t
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Failure Rate Estimate

| (T) = MGT)
cde ™



Motivation for Goel-Okumoto M odel i S
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The expected number of faults detected in atime interval (t,t+Dt) isproportional
to the number of faults remaining in the software at time't.

Thus,

M (t+Dt)- M(t) =d[c- M (t)]Dt
or equivalently, M G('t) + dM (t) i
implying, M(t) =c(l- e %)

Goel and Okumoto further assume that the number of faults observed in (0, t) is Poissor{ M(t) }.



S-Shaped M Odel Lucent Technologies €
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. d
C lat =
llirz;l??ureg/e d (1) 1+ be o
Cumulative Test Time (days) M (t) - = d ’ (1' e dt)
; (1+be®)



Challenges With Applications Lucent Technologies f{_
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Traditional SRGMs are applied to system test data with the hope of
obtaining an estimate of software failure rate that will be observed in the
field. The following issues have to be taken into consideration:

 Theusage profilein the field is typically very different than the
testing profile

 Fault removal in field environments is not instantaneous

o Quality of software reliability data



Non-I nstantaneous Fault Removal Times
In Field Environments iy SN AL
- ]

G-O Mode G-O Model with I mperfect Debugging
M (t) = c[1- e ¥] M (t) :%[1- & ]
— - dt
I (t) —_ Cde I (t) — Cde— dpt

where: ¢ initial number of faults at time of field deployment
d average per fault failure rate in afield environment
p probability that a detected fault is successfully removed



Non-I nstantaneous Fault Removal Times
In Field Environments iy SN AL
i G

* Perfect debugging assumption is an acceptable assumption
(based on thorough regression tests)

 \WWe relate non-instantaneous fault removal to imperfect debugging

Under the imperfect debugging model:

E(# of occurrences of each fault)= 1/p

Under the situation of non-instantaneous :> 1 =1+ nnd
fault removals, if mdenotes the mean time P

to remove a fault and there are n systems

In the field

E(# of occurrences of each fault)= 1+ nnd
10



Non-I nstantaneous Fault Removal Times
In Field Environments R T
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- d ’ t
M (t) =c(1+nmd)[1- e ™ ]
- d ’ t
| (t) =cde "™

where: ¢ initial number of faults at time of field deployment
d average per fault failure rate in the field environment

m average time to remove a fault (m= 0 gives back the G-O model)
n number of systemsin the field

t cumulative exposure time, aggregated across all installations
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Field Failure Rate Prediction if Testing Profile
M atchesthe Field Usage Profile Lucent Technologies !
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The number of initial faults at time of field deployment time is the same as the
number of residual faults after testing has completed

The average per fault failure rate in the field environment is identical to the
average per fault failure rate in the test environment

For the field failure rate model, we can use the G-O model replacing ¢ with ce
and adjusting for non-instantaneous removal times

- d ’ t
I (t) — (Ce- dT)de 1+nnd
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Field Failure Rate Prediction When Testing
Profile Does Not Match the Field Usage Profile  tuee™ Jechnologes §
~ i | o= G

1) Testing and field usage profiles drive the average per fault failure rate. Usually the
failure rate of faultsis smaller in field environments than in test environments

2) Define K =d/d’, where d” isthe average per fault failure rate in the field environment
3) Kisthe “per fault failure rate” calibration factor

4) Estimate K from previous releases of the software, or from related projects

d/K

Tt
I d (t) — (Ce- dT)(d/K)e 1+nmd /K
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Case Study: GSM Wireless System

MSC

PSTN

BCF - Base Station Controller Frame

BTS - Base Transceiver Station
MSC - Mobile Switching Center

PSTN - Public Switched Telephone Network

Lucent Technologies
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BCF Software

BCF

» setup calls

* tear down calls

* negotiate cell handoffs

 dynamically control transmit
power levels

 alarm handling

« overload control

* equipment provisioning

14
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Goals
Estimate the field failure rate of R3 BCF software which is currently

In system test

Data Available

1) R3 Test Data in a non-operational profile environment

2) Field fallure data for R1 and R2

15



Field Failure Data for R1 Lucent Technologies {f
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System Days Failures
Month Days Cumulative Month Cumulative
1 1,249 1,249 4 4
2 3,472 4,721 6 10
3 4,065 8,786 4 14
4 4,883 13,669 3 17
5 5,425 19,094 6 23
6 5,656 24,750 1 24
7 7,549 32,299 2 26
8 8,295 40,594 4 30
9 8,882 49,476 1 31
10 6,120 55,596 0 31
11 2,465 58,061 1 32
12 527 58,588 1 33
13 45 58,633 0 33

16



Field Failure Data Analysis

Cumulative Failures

w
N
L

N
~
.

120 A

Cumulative Failures
=
[e)}

o

oo
|

R1 Field

0 10,000 20,000 30,000 40,000 50,000 60,000

Cumulative System Days

R2 Field

35,000 70,000 105,000 140,000 175,000

Cumulative System Days
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T, =58,633 system-days (13 months, 167 systems)
m= 45 days
¢, = 22.3 faults

~

d, = 0.0000746 failures/day/fault
(StdError: 3.07° 10°)

T, =167,900 system-days (13 months, 370 systems)
m= 45 days
C, =114.01 faults

~

d, =0.0000128 failures/day/fault
(StdError: 3.07" 10°)
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R3 Test Data

Lucent Technologies
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Number of Days of Each Software Cumulative
Calendar Installation System-Days | Cumulative
Week of Testing Failures
Lo || e | ST R | (o) | ) o T
1 5 5 5
2 4 9 6
3 4 13 13
4 5 18 13
5 5 5 28 22
6 5 33 24
7 5 5 43 29
8 SHES 5 5 63 34
9 5485 5 5 5 88 40
10 S 5 SRS NS 123 46
33 5 5|5 6 955 170
34 5 5|6 6 977 176
35 5 5|6 6 999 180
36 2 1001 181

As many as 11 frames
were being used in parallel
during system test.

‘Failure’ isdefined as
aseverity 1, 2 or 3MR.
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G-O Modd Fittothe R3 Test Data

Cumulative Failures

250

200 -

150

100 A

50
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} 239-181=58

M (t) = &(1- e %)

1000 1500 2000

Cumulative System Days of Testing

0 @ 2B3falts 6
€47~ £0.00142 fails/day/fault 5

~

K =9 -3
(d, +d,)/2
. &6 é2702° -0.005520

0]
d; & 0.00552 0.00027° g
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R3 Field Failure Rate Prediction nprten e
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-_—~_________
2.5
2 - -
Q
g T~ 95% Prediction Limits
g Smoothed Nonparametric
= Estimate of R3 Failure Rate
LL
(92)
o
0 0.1 0.2 0.3 0.4 0.5
Calendar Time (Years)

0.00142/31

| () = 587 (365" 0.00142/31)" e 345 45 00ows2/a1
(fails/year, after t calendar-years of field exposure)

" 3657 345t
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Architecture-Based Software Reliability Models

21



Questionsto Answer ke selt . F el
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» What type of software redundancy, if any, is needed in order
to achieve the reliability target?

» How fast do fault recovery times need to be?

» Should software processes try to restart before a failover is attempted?

* How thorough do system fault diagnostics need to be?

* What is the required software failure rate?

22



Case Study - Continued ey
- S

BTS Controller Software

MSC » allocate radio resources

* negotiate hand-offs

e manage connections between BTS
and BCF

PSTN BCF « provision and maintenance

Alternative Architectures

» Simplex, no process restart capability

« Simplex, with restart capability

* Active-Standby, with fail-over capability

BCF - Base Station Controller Frame
BTS - Base Transceiver Station
MSC - Mobile Switching Center

PSTN - Public Switched Telephone Network
23



Restart Fails (1- 1)),

Non-restarable SW @ General Active-Standby
Softwar e Availability M odel

Restartable failure MonSW

@ on Active sde | M \failure on Restart Fails, System
Activeside  Detected non-restartable Does not Detect
o e S Swiaire 0 et oms @
Fails MonSwW Undetected - Detection
(1- r)nl failure on Restartable or Stdby MonSW Restart Fails & |
ctiveside Non-restartabl failure System Detects m, +1,
| Stdby SW failure (- r)g.m
Restart 3 " [+, Detected
Success T Manual gir;ﬁtalfe Auto Failover
Restartable Detection AutoFailover | AutoFailover
Failure on m cl Fails, System | Fails, System
Active side/ Restart \ Detects Does not Detec
Success Manual Reboot (- p)a;m (- p)(1- q,)m
r Detection % f
my +1 g Undetected Parallel Reboot m, @
Restartable \
Restart | or Non-restartable\ Reboot Mk o
Fails 2 Stdby SW failure .
1-r)m gl\(/)\?;rglstartable - C)(?/ st Undetected m, Failover
Activ:I :(rjeeon S\/N failure Parallel @ M anual Success
1- ¢)(I ;+1,) Reboot Failover Failg™\

Non-restartable
SW failure on
Active side

Restartable

1- Manual
(/pm)m“' Detection

e Manual m + I 3
Detection

m+l,

Restart Fails

1- o)l , Restartable or
No Escalation

Non-restartable
SW failure

Restart Fails and Escalation
to AutoFailover (1. roywm,



Special Case: Cold Standby e e
- -

Restart Fails, System

Detected non-restartable Does not Detect
SW failure (1- r)(2- g)mN @ —

c, :
Detection

Restart Fails

System Detects
1-r
gﬁtlﬁ‘r;ﬂfe Auto Failover
AutoFailover AutoFailover Succeeds
Fails, System Fails, System pm

cl, Detects Does not Detect

- pam /' (1- p)l- q,)m;

Parallel Reboot @ @
(D)
Reboot my

Manual
Undetected m+1g ;3 o
: - ccess
S\ﬁfaﬂl-lfe Parallel @ Manual P My
@-c)I;+1,)  Reboot Failover ~
Fails '\D"a”“a'
(L- pIMN etection
Manual
Detection
m, +1,
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Simplex Systems as Special Cases Lucent Technologies |
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Simplex System With No Restart Capability

| , =0 (no restartable software)

| =1, =1,=0 (nostandby side)

r=0 and m =¥ (no restart attempts)

p=0 and m =¥ (no automatic failover attempts)
p,=0 and m, =¥ (no manual failover attempts)
0, = d; =1 (no restart or failover attempts)

r. =1andm, = manual recovery duration of

Simplex System With Restart Capability

|« =1, =15 =0 (no standby)

p=0and m =¥ (no automatic failover attempts)
p,=0and m, =¥ (no manual failover attempts)
g; =1 (no automatic failover attempts)
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Network Traffic Profile Lucent Technologies |
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%Capacity Remaining

C = % Capacity Remaining After the Failure
C. = Capacity Required for Traffic Volume Offered in Hour-i
S = % Offered Traffic Served if Failure Occurs in Hour-i

= Min(C ,C)/C

S = Expected %Traffic Served, Given a Failure That Leaves Capacity at C -



Feasibility Regionsfor Critical Parameters Lucent Technologies ff )
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10

Level Curvesfor 99.999% Availability
(all other parameters are fixed)

—e— No Restart

—m— Restart

—a— Active-Standby
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-]
Challenges

 Availability formulais straight-forward to obtain, but is complicated inthat it is
highly non-linear and it depends on numerous (23) parameters

» Analysis of derivatives, while also straight-forward is not particularly insightful, since
they themselves depend on the same set of parameters.

 “Tornado Graphs’ depends too much on the fixed values for the other parameters.

Approach

* Identify likely ranges for each parameter to define the domain of the availability function

 Uniformly sample N times from the domain to obtain A, A,, ..., Ay

» Use an efficient second-order polynomial to approximate the availability formula

» Use the t-statistics as the associated measure of influence
30



Case StUdy —Continued Lucent Technologies | 4

(Likely Ranges for Parameter Valuesin Active-Standby Architecture) Bell Labs Innovations '\
- 5 Lo S

|, Fails/yr [0.1,1.0] M, Failovers/yr 26,280

|, Failsiyr [0.1,1.0] m,, Recoveries/yr 17,520

|, Failsiyr [0.1,0.5] r [0.9,0.99]
| Failslyr 0 r [0.9,0.99]
| . Fails/yr [0.1,0.5] q, [0.9,0.99]
| . Falils/yr [0.1,0.5] ol [0.9,0.99]
m  Restarts/yr | 31,536,000 p [0.9,0.99]
m Failovers/yr 3,153,600 P, [0.9,0.99]
m  Reboots/yr 26,280 C [0.9,0.99]
M, Detections/yr |[ 1095, 2190] W [0.9,0.99]
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Case Study — Continued
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(Efficient Second-Order Regression Model) sel Labs Imovations W
- ]

D(min/yr) =497 +379l ;, + 378l , - 358 ,c- 356l ,c+284(m, /1000)c- 268(m, /1000) - 461c
- 12.21 ,(m, /2000) +319I , - 12| ,(m, /1000) - 298l ,c
- 22p-11.6l ,(m, /1000) - 11.7r - 9.6q; - 9q, - 5.8r_ - 5w- 2.1p

| nter pretation

Adequacy of Fit

| nfluential Parameters

» Software fallure rates on active side

* Silent failure detection time

» Coverage factor

 Cross-product of coverage factor with
software failure rates and silent failure

detection time

100 o

Observed

0 20 40 o o o Weakly Influential Perameters
* All of the success probabilities
Predicted
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 SRGM fitting tools
« Small sample inference procedures
e Failure rate template

 Improved methods for linking SRGMs
to architecture-based models
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