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When are Software Reliability 
Models Typically Applied?

Software Reliability Growth Models
......reliability is quantified and  influences the release decision

Unit 
Testing

Software
Development

Integration
Testing

System
Testing

General
Availability

Requirements
Formulation

Architecture
Design

Architecture-Based Reliability Models
.....decisions are being made as to how to design reliability into the system

First
Office

Application

Software Reliability Growth Models
......reliability predictions are verified
......parameters useful for modeling reliability of next release are estimated
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Software Reliability Growth Models (SRGMs)
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SRGMs:   Questions to Answer

•What would the user-perceived failure rate of the software be if
if the software was to be released now?

•How much more testing is needed to achieve the reliability targets?

•How many faults exist in the code at the end of system test?
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Goel-Okumoto Model
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The expected number of faults detected in a time interval    is proportional 
to the number of  faults remaining in the software at time t.

Thus, 

or equivalently,

implying,

Goel and Okumoto further assume that the number of faults observed in (0 , t) is Poisson{ M(t) }.
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Challenges With Applications

Traditional SRGMs are applied to system test data with the hope of 
obtaining an estimate of software failure rate that will be observed in the 
field. The following issues have to be taken into consideration:

• The usage profile in the field is typically very different than the 
testing profile

• Fault removal in field environments is not instantaneous

• Quality of software reliability data
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G-O Model
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where:     c initial number of faults at time of field deployment
d average per fault failure rate in a field environment
p probability that a detected fault is successfully removed
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G-O Model with Imperfect Debugging

Non-Instantaneous Fault Removal Times
In Field Environments
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•Perfect debugging assumption is an acceptable assumption 
(based on thorough regression tests)

•We relate non-instantaneous fault removal to imperfect debugging

Under the imperfect debugging model:

E(# of occurrences of each fault)= 1/p

Under the situation of non-instantaneous 
fault removals, if µ denotes the mean time 
to remove a fault and there are n systems
in the field

E(# of occurrences of each fault)= 1+ nµd

Non-Instantaneous Fault Removal Times
In Field Environments
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Non-Instantaneous Fault Removal Times
In Field Environments
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where:     c initial number of faults at time of field deployment 
d average per fault failure rate in the field environment
µ average time to remove a fault (µ = 0 gives back the G-O model)
n number of systems in the field
t cumulative exposure time, aggregated across all installations
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Field Failure Rate Prediction if Testing Profile 
Matches the Field Usage Profile

The number of initial faults at time of field deployment time is the same as the 
number of residual faults after testing has completed

The average per fault failure rate in the field environment is identical to the 
average per fault failure rate in the test environment

For the field failure rate model, we can use the G-O model replacing     with  
and adjusting for non-instantaneous removal times

1( ) ( )
d t

dT n dt ce de µλ
− ×

− +=

dTce−c
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Field Failure Rate Prediction When Testing 
Profile Does Not Match the Field Usage Profile

1) Testing and field usage profiles drive the average per fault failure rate.  Usually the
failure rate of faults is smaller in field environments than in test environments

2)  Define                  , where        is the average per fault failure rate in the field environment

3)  K is the “per fault failure rate” calibration factor

4)  Estimate K from previous releases of the software, or from related projects

*K /d d=

/
1 /( ) ( ) ( / )     

d K
t
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adj t ce d K e µλ
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*d
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BCF    - Base Station Controller Frame
BTS    - Base Transceiver Station 
MSC   - Mobile Switching Center
PSTN  - Public Switched Telephone Network

BCF

MSC

PSTN

BTSs

BCF Software
•setup calls
•tear down calls
•negotiate cell handoffs
•dynamically control transmit 

power levels
•alarm handling
•overload control
•equipment provisioning 

Case Study:  GSM Wireless System
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Estimate the field failure rate of R3 BCF software which is currently 

in system test

1) R3 Test Data in a non-operational profile environment

2) Field failure data for R1 and R2 

Goals

Data Available
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Field Failure Data for R1

System Days Failures
Month Days Cumulative Month Cumulative

1 1,249 1,249 4 4
2 3,472 4,721 6 10
3 4,065 8,786 4 14
4 4,883 13,669 3 17
5 5,425 19,094 6 23
6 5,656 24,750 1 24
7 7,549 32,299 2 26
8 8,295 40,594 4 30
9 8,882 49,476 1 31
10 6,120 55,596 0 31
11 2,465 58,061 1 32
12 527 58,588 1 33
13 45 58,633 0 33
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Number of Days of Each Software
InstallationCalendar

Week
1 2 3 4 5 6 7 8 9 10 11

Cumulative
System-Days

of Testing
Cumulative

Failures

1 5 5 5
2 4 9 6
3 4 13 13
4 5 18 13
5 5 5 28 22
6 5 33 24
7 5 5 43 29
8 5 5 5 5 63 34
9 5 5 5 5 5 88 40
10 5 5 5 5 5 5 5 123 46

33 5 5 5 6 955 170
34 5 5 6 6 977 176
35 5 5 6 6 999 180
36 2 1001 181

As many as 11 frames 
were being used in parallel 
during system test.

‘Failure’ is defined as 
a severity 1, 2 or 3 MR.  
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G-O Model Fit to the R3 Test Data
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Architecture-Based Software Reliability Models
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Questions to Answer

•What type of software redundancy, if any, is needed in order 
to achieve the reliability target?

•How fast do fault recovery times need to be?

•Should software processes try to restart before a failover is attempted?

•How thorough do system fault diagnostics need to be?

•What is the required software failure rate?
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BCF    - Base Station Controller Frame
BTS    - Base Transceiver Station 
MSC   - Mobile Switching Center
PSTN  - Public Switched Telephone Network

BCF

MSC

PSTN

BTSs

BTS Controller Software
•allocate radio resources
•negotiate hand-offs
•manage connections between BTS 
and BCF

•provision and maintenance

Case Study - Continued

Alternative Architectures
•Simplex, no process restart capability
•Simplex, with restart capability
•Active-Standby, with fail-over capability
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Special Case:  Cold Standby
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Simplex Systems as Special Cases
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Identifying Influential Parameters

•Availability formula is straight-forward to obtain, but is complicated in that it is
highly non-linear and it depends on numerous (23) parameters

•Analysis of derivatives, while also straight-forward is not particularly insightful, since 
they themselves depend on the same set of parameters.

•“Tornado Graphs” depends too much on the fixed values for the other parameters. 

•Identify likely ranges for each parameter to define the domain of the availability function

•Uniformly sample N times from the domain to obtain A1, A2, . . . , AN

• Use an efficient second-order polynomial to approximate the availability formula

•Use the t-statistics as the associated measure of influence

Challenges

Approach
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Case Study – Continued
(Likely Ranges for Parameter Values in Active-Standby Architecture)
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Case Study – Continued
(Efficient Second-Order Regression Model)
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Influential Parameters
•Software failure rates on active side
•Silent failure detection time
•Coverage factor
•Cross-product of coverage factor with

software failure rates and silent failure
detection time

Weakly Influential Parameters
•All of the success probabilities

InterpretationAdequacy of Fit
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Needed Research

•SRGM fitting tools

•Small sample inference procedures

•Failure rate template

•Improved methods for linking SRGMs
to architecture-based models


