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1. MV Times to Events Analysis

Frailty models are useful for modelling depen-

dence in multivariate times to events analysis

[Clayton & Cuzick,1985; Oakes,1989]. Vari-

ability of multivariate times to events arise from

two sources:

1. variability explained by the hazard function

2. variability common to subjects of the same

group,explained by the frailty.

Frailty is an individual random effect. Event

times are conditionally independent given the

frailty.
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We assume the hazard for each event time fol-

lows a multiplicative proportional hazards

model and carry out Bayesian inference.

Must specify a model for baseline hazard and

frailty.

Frailty Distribution: PVF family-tilted Positive

Stable [Hougaard,1986]

Baseline Hazards: Piecewise exponential haz-

ard with correlated prior process [Arjas and

Gasbarra, 1994, Gamerman,1991] or Weibull

model
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Multiplicative Proportional Hazards model con-
ditional on the frailty xi:

h(tij|xi, z̃ij) = λ0(tij) exp(β̃tz̃ij)xi

tij : event time of the jth subject (i = 1, · · · , m)
in the ith group (j = 1, · · · , n)

z̃ij is a fixed, possibly time dependent covari-
ate vector of dim. p

β̃ is the vector of regression parameters.

λ0(.) is the baseline hazard function.

xi ∼ PV F (α, δ, θ)
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Baseline Hazard

Piecewise exponential hazard with correlated
prior process:
The time period is divided into g prespecified
intervals
Ik = (tk−1, tk), k = 1, · · · , g, 0 = t0 < t1 < · · · <
tg < ∞
Assume that λ0(tij) = λk for tij ∈ Ik.
Use a discrete-time martingale process to cor-
relate the λk’s in adjacent intervals

λk|λ1, · · · , λk−1 ∼ Gamma(vk,
vk

λk−1
), k = 1, · · · , g

where λ0 = 1, so E(λk|λ1, · · · , λk−1) = λk−1.
Let λ̃ = (λ1, · · · , λg).
Note: vk small implies less information for smooth-
ing the λk ’s; if vk = 0, λk is independent of
λk−1 while if vk →∞, λk = λk−1.
A large value of g would give unstable λ es-
timates; a very small g value would lead to
inadequate model fitting.
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2. PVF as a Tilted Positive Stable

PVF(α, δ, θ): 3 parameters PVF distribution
where α ≤ 1, δ > 0, and θ ≥ 0 for α > 0 and
θ > 0 for α ≤ 0.

Special cases:

• α = 0, PVF→ Gamma

• θ = 0,δ = α,PVF→ Positive Stable

• α=1/2, PVF→ Inverse Gaussian

6



For α ≥ 0, the PVF is obtained as the exponen-

tial family generated from the positive stable

distributions [Jorgensen, 1987 and Hougaard,

1986]:

Suppose W ∼ P (α, α,0), where α ∈ (0,1) with

Laplace transform

L(s) = E exp (−sW ) = exp (−sα) , s ≥ 0,

[Samorodnitsky and Taqqu, 1994].

For δ > 0,
(

δ
α

)1/α
W ∼ P (α, δ,0), with Laplace

transform

L(s) = E exp[−s

(
δ

α

)1/α

W ] = exp
[
−sα

(
δ

α

)]
.
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Let X =
(

δ
α

)1/α
W

For fixed α, the exponential dispersion model

generated by P (α, α,0), is PVF P (α, δ, θ), with

pdf [Jorgensen, 1987]

fα (x|ζ) exp (−θx)

ζLα(ζθ)
, where ζ =

(
δ

α

)1/α

;

Its Laplace transform is

L (s) = exp

[
−δ{(θ + s)α − θα}

α

]
.

It helps us to study dependence properties.

Lack of closed form pdf makes inference diffi-

cult. We show an approach which is an exten-

sion of a result for stable.

8



Sα(σ, β, µ) : 4-parameter stable distribution where
α : stability parameter ∈ (0,2],
β : skewness parameter ∈ [−1,1]
σ : scale parameter ∈ (0,∞),
µ : location parameter ∈ (−∞,∞).
When β = 1,0 < α < 1, µ = 0, σ = 1, the pos-
itive stable distribution Sα(1,1,0) has support
(0,∞). Its density function is not available in
closed form.

Let f(wi, yi|α) be a bivariate function such that
it projects (−∞,0)×(−1/2, lα)∪(0,∞)×(lα,1/2)
to (0,∞) :

f(wi, yi|α) =
α

|α− 1| exp

−

∣∣∣∣∣
wi

τα (yi)

∣∣∣∣∣
α(α−1)




×
∣∣∣∣∣

wi

τα (yi)

∣∣∣∣∣
α/(α−1) 1

wi
,

where

τα(yi) =
sin(παyi + ψα)

cosπyi
[

cosπyi

cos{π(α− 1)yi + ψα}
]
α−1

α ,
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wi∈ (−∞,∞), yi ∈ (−1/2,1/2), ψα = min(α,2−
α)π/2 and lα = −ψα/πα.

The marginal frailty distribution based on sta-

ble law is [Buckle, 1995; Ravishanker & Qiou,

1998]

f(wi|α) =
α|wi|1/(α−1)

|α− 1|
∫ 1/2

−1/2
exp


−

∣∣∣∣∣
wi

τα (yi)

∣∣∣∣∣
α/(α−1)




×
∣∣∣∣∣

1

τα (yi)

∣∣∣∣∣
α/(α−1)

dyi.

Replacing
∫

by MC simulation enables likeli-

hood based inference.
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Following Jorgensen (1987) and Hougaard (1986a),

the density for the PVF family when α ∈ (0,1]

becomes

f(xi|α, δ, θ) =
α|xi|

1
(α−1)

(
α
δ

) 1
(α−1) exp(−θxi +

δθα

α )

|α− 1|

×
∫ 1/2

−1/2
exp


−

∣∣∣∣∣
xi

τα (yi)

∣∣∣∣∣

α
(α−1)

(
α

δ

) 1
(α−1)




×
∣∣∣∣∣

1

τα (yi)

∣∣∣∣∣

α
(α−1)

dyi.
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Considering a reparametrization δ = η1−α and

θ = η, the resulting distribution has mean 1

and variance (1−α)/η. After reparametrization

of δ and θ in terms of η, (in order to yield mean

one), the density becomes

f(xi|α, η) =
α

α
(α−1)|xi|

1
(α−1)η exp(−ηxi +

η
α)

|α− 1|

×
∫ 1/2

−1/2
exp


−

∣∣∣∣∣
xi

τα (yi)

∣∣∣∣∣

α
(α−1)

α
1

α−1η




×
∣∣∣∣∣

1

τα (yi)

∣∣∣∣∣

α
(α−1)

dyi.
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3. Bayesian Modeling Framework

For subject j in group i, [ (j = 1, · · · , m),

(i = 1, · · · , n)], we observe (tij, δij, z̃ij) .

tij: event time if δij = 1 and censoring time if

δij = 0.

Let Z̃ denote all such triplets, (tij, δij, z̃ij).

Frailty X̃ = xi: augmented data. Its distribu-

tion is based on a vector of auxiliary variables

Ỹ = (y1, · · · , yn).

(X̃, Ỹ , Z̃):complete data. X̃ and Ỹ are treated

as parameters in the Bayesian formulation.

The Bayesian specification requires a likelihood

and a prior from which the posterior density is

obtained as a normalized product of the likeli-

hood and the prior.
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Derivation of the likelihood
Baseline hazard-piecewise exponential with

correlated prior process.

gij: number of partitions of the time interval

In interval k, given xi, hij = λkeβ
′
zijxi.

If tij > tk, likelihood contribution for the kth

interval is exp(−λk∆keβ
′
zijxi) where ∆k = tk−

tk−1.
If tk−1 < tij ≤ tk the likelihood contribution is

(λkeβ
′
zijxi)

δij exp{−λk(tij − tk−1)e
β
′
zijxi}.

Therefore, the complete data likelihood is

l(β̃, λ̃, α, η|X̃, Ỹ , Z̃) =

n∏

i=1

m∏

j=1

[

gij−1∏

k=1

exp{−λk∆keβ
′
zijxi}]

× exp{−λgij(tij − tgij−1)e
β
′
zijxi}(λgije

β
′
zijxi)

δij .
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We integrate out the xi’s from the last equa-

tion using PVF density to get observed data

likelihood

l(β̃, λ̃, α, η|Z̃) =
n∏

i=1

∫ m∏

j=1

[

gij−1∏

k=1

exp{−λk∆keβ
′
zijxi}]

× exp{−λgij(tij − tgij−1)e
β
′
zijxi}.(λgije

β
′
zijxi)

δij

×α
α

α−1|xi|
1

α−1η exp(−ηxi +
η
α)

|α− 1|
∫ 1/2

−1/2
exp

[
−| xi

τα (y)
| α
α−1

α
1

α−1η

]
| 1

τα (yi)
| α
α−1dyidxi.

Note: Complete likelihood corresponds to the

conditional model, given the frailty xi, while

observed likelihood corresponds to the marginal

model with the frailty parameter is integrated

out. For parsimony of notation, we suppress

the subscripts on gij and denote it by g.
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Prior Specification
Piecewise exponential hazard

Prior for λk|λ1, ..., λk − 1 : Gamma(vk, vk
λk−1

)

Prior for p -dimensional vector β̃: Normal(ẽ, D)

Prior for α: Uniform(0,1)

Prior for η: Gamma(c, c)

Assuming independence of all model parame-

ters, The posterior density based on the ob-

served data likelihood is proportional to the

product of the likelihood and the prior, i.e.,

p(λ̃, β̃, α, η|Z̃) ∝ L
(
λ, γ, β̃, η, α|Z̃

)
p(β̃)p(λ̃)p(α)p(η)

We use a modified Gibbs sampler to generate

samples from p
(
λ, γ, β̃, η, α|Z̃

)
, given initial val-

ues for λ, γ, β̃, η, α, and the two “augmented”

vectors x̃ and ỹ.
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Sampling Algorithms
Piecewise exponential hazard

λ̃ : ratio of Uniform method

β : ratio of uniform method

α : Metropolis Hastings Algorithm with Beta

proposal

η : Multiple try Metropolis Algorithm with log-

normal proposal.

x: ratio of uniform method

y: rejection algorithm
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4. Illustration: Kidney Infection Data

• We illustrate our approach using data on

times to first and second occurrence of in-

fection in 38 patients on portable dialysis

machines (McGilchrist and Aisbett, 1991).

• Covariate to consider: gender (0 indicating

male, 1 indicating female)

• Other covariates: age, disease type- in-

significant so omitted

Piecewise exponential hazard with correlated

prior process:

The prior for η is Gamma(0.1, 0.1).

The prior on β is Normal(0,103), where β is

the coefficient corresponding to gender.
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For lognormal proposal for the generation of η,

we assume that standard deviation of normal

distribution is 0.4.

We choose the value 0.01 for vk

Using Gibbs sampling, we generate 30,000 it-

erates from the complete conditional distribu-

tions After monitoring convergence, we con-

sider 20,000 additional iterates for making in-

ference.



Table1:Posterior Estimates of Kidney

Infection data:

Baseline Hazards: Piecewise Exponential

Hazard with Correlated Prior Process

Frailty: PVF

Mean Median 95% C. I.
α 0.38301 0.35787 (0.09162, 0.79398)
η 1.0880 1.0457 (0.24814, 2.34249)
β -1.1449 -1.1300 (-2.05725, -0.30453)
λ1 0.00122 0.00040 (0.00001, 0.00734)
λ2 0.00419 0.00078 (0.00002, 0.03134)
λ3 0.00502 0.00086 (0.00002, 0.03771)
λ4 0.00499 0.00086 (0.00002, 0.03775)
λ5 0.00507 0.00087 (0.00002, 0.03791)
λ6 0.00517 0.00089 (0.00002, 0.03780)
λ7 0.00545 0.00104 (0.0003, 0.04078)
λ8 0.00797 0.00245 (0.00012, 0.05105)
λ9 0.03782 0.02698 (0.00597, 0.13416)
λ10 2.6021 2.3686 (1.1441, 5.4127)
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• The negative estimate of β in PVF frailty

model: lower risk of infection for female

patients

• posterior parameter estimates of δ and θ:

1.0534, 1.0880 respectively–indicating none

of the estimated values of α, δ and θ falling

in the restricted parameter regions corre-

sponding to gamma or positive stable dis-

tributions.

20



Conditional Predictive Ordinate (CPO) plots

indicate that the PVF frailty model is sup-

ported over the positive stable frailty(82.5%)

models for Piecewise Exponential baseline

hazard model.
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5. Local Dependence Measure

The cross ratio function is useful measure of

local dependence for bivariate event times (u1, u2)

and has the form

χ (u1, u2) =
h (u1|U2 = u2)

h (u1|U2 > u2)
,

where

h (u1|U2 = u2) =
∂2S (u1, u2)

∂u1∂u2
/{ ∂

∂u2
S (u1, u2)}

h (u1|U2 > u2) =
∂S (u1, u2)

∂u1S (u1, u2)
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For bivariate times to events data with the

piecewise exponential hazard with the corre-

lated prior process, four possible cases emerge

in the evaluation of the cross-ratio function.

Let u1 and u2 denote the event time or cen-

sored time for the first and second individuals

respectively. Let z1 and z2 denote the respec-

tive covariate vectors for the first and second

individuals, while β denotes the regression co-

efficient vector.

Case 1: Both individuals survive beyond the

kth subinterval, i.e., u1 > tk and u2 > tk. In

this case,

S(u1, u2) = exp
[
− δ

α
{
(
θ + λk

(
tk − tk−1

)
eβ′z1+

λk
(
tk − tk−1

)
eβ′z2

)α − θα}
]

Since this is not a function of u1 or u2, the

cross ratio function is undefined.
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Case 2: The first individual survives beyond
the kth interval, while for the second individual,
the event time occurs within the kth subinter-
val, i.e., u1 > tk and tk−1 < u2 < tk. Then,

S(u1, u2) = exp
[
− δ

α
{
(
θ + λk

(
tk − tk−1

)
eβ′z1+

λk
(
u2 − tk−1

)
eβ′z2

)α − θα}
]

This is a function of u2 but not of u1, and the
cross ratio function is again undefined in this
case.

Case 3: The second individual survives beyond
the kth interval, while for the first individual,
the event time occurs within the kth subinter-
val, i.e., tk−1 < u1 < tk and u2 > tk. then,

S(u1, u2) = exp
[
− δ

α
{
(
θ + λk

(
u1 − tk−1

)
eβ′z1+

λk
(
tk − tk−1

)
eβ′z2

)α − θα}
]

This is a function of u1 but not of u2, so that
the cross ratio function is undefined.
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Case 4: The event times for both individuals

occur within the kth subinterval, i.e., tk−1 <

u1 < tk and tk−1 < u2 < tk. In this case,

S(u1, u2) = exp
[
− δ

α
{
(
θ + λk

(
u1 − tk−1

)
eβ′z1+

λk
(
u2 − tk−1

)
eβ′z2

)α − θα}
]

The cross ratio function is

χ(u1, u2) =
[
1 + (1− α) /δ{θ + λk

(
u1 − tk−1

)
eβ′z1+

λk
(
u2 − tk−1

)
eβ′z2}α

]
.

As θ → 0, δ = α, the cross ratio function cor-

responds to the survival model with positive

stable frailty and the semiparametric baseline

hazard function. As α → 0, the cross ra-

tio function measures local dependence for the

Gamma frailty and the piecewise exponential

baseline hazard.
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Figure 1: Estimated cross-ratio function for
the PVF frailty for male

Figure:2 Estimated cross-ratio function for
the PVF frailty for female
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The cross ratio function is defined at distinct

time. Therefore for piecewise exponential haz-

ard with correlated prior process, this function

is quite restricted. There is one empirical local

dependence measure defined in time interval

as follows,

τ (u1, u2) =
h (U1|U2 ∈ Ik)

h (U1|U2 > tk)
,

where U1 ∈ Ii. But after fitting the model

and obtaining all model parameter estimates,

empirical dependence measure is not very in-

teresting.

27


