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1 Background

• Mixture Experiments
• Canonical Polynomials (Sheffe’ 1958)
• Permutation Mixture Experiment Designs

2 Standard Regression Designs

• Information Matrix M(p)

• D-optimal criteria φ(p) = logdet(M(p))

3 Permutation Mixture Experiment Designs

• Information Matrix N(p)

• D-optimal criteria φ(p) = logdet(N(p))

4 General Optimisation Problem (GOP), Op-
timality Conditions

• PMED as a special case of GOP
• Directional Derivative and Vertex Directional Deriva-
tive

• Optimality Conditions

5 Algorithm
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6 Constraints under PMED

6.1 Order constraints

• Multiple Local Maxima
• Transformation

6.2 Bound constraints

6.2.1 Common Lower Bound Only

6.2.2 Common Upper Bound Only

6.2.3 Common Lower and Upper Bound

6.3 Simultaneous Order and Bound Constraints

6.3.1 Common Lower Bounds Only and Order
Constraints

6.3.2 Common Upper or (Lower and Upper)
Bounds and Order Constraints

7 Example
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1 Background :

Mixture Experiments :

Any experiment consists of :

control variables xu,

response variables yu
errors variables eu

Mixture experiments with q-components and n blends
(xu1, ..., xuq) have two extra conditions,

q
∑

i=1

xui = 1, xui ≥ 0, i = 1,2, · · · , q and u = 1, ..., n.

Examples :
Ceramic Products, Concrete Products, Chemical Prod-
ucts, Rubber Products, Food Products
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Canonical Polynomials (Scheffe’s Model ):

yu observed at xu = (xu1, ..., xuq),∑q
i=1 xui = 1 and xui ≥ 0, u = 1,2, ...., n

Conventional model is quadratic , a good approximation
to most functions. The general 2nd order polynomial
is:

E(yu) = α+

q
∑

i=1

βixui+

q
∑

i=1

βiix
2
ui+

q−1
∑

i <

q
∑

j

βijxuixuj (1)

By making in ( 1) the substitution :

xj = 1−
q
∑

i6=j

xi

the resulting model is the Canonical polynomial

E(yu) =

q
∑

i=1

βixui+

q−1
∑

i <

q
∑

j

βijxuixuj
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Permutation Mixture Experiment Design :

Design Points = Permutations

xu = (xu1, ..., xuq) = any design point

(xu1, ..., xuq) = Perm(p1, ..., pq)

where
∑q

i=1 pi = 1 and pi ≥ 0

So

xu = xu(p) where p = (p1, · · · , pq)T
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2 Standard Regression Designs :
Information Matrix is :

M(p) =

k∑

i=1

pif(xi)f
T(xi)

Where f is the regression function vector.
D-optimal criteria:

φ(p) = ψ(M(p)) = logdet(M(p))

3 Permutation Mixture Experiment Designs :
Information Matrix is :

N(p) =

n∑

u=1

f(xu(p))f
T(xu(p)).

Where f is the regression function vector.

f(x) = (x1, .., xq, x1x2, .., xq−1xq)
T

D-optimal criteria:

φ(p) = ψ(N(p)) = logdet(N(p))
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4 GOP, Optimality Conditions, Algorithm :

4.1 GOP : maximise φ(p)

subject to
∑q

i=1 pi = 1 and pi ≥ 0 i = 1, · · · , q

PMED is a special case of the GOP stated above, we
seek to optimise

φ(p) = ψ{N(p)} = log{det[N(p)]}
with respect to p (the component values) subject to

pi ≥ 0 ,
∑q

i=1 pi = 1.
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4.2 Definition (Directional Derivative) :

Define g(p, z, ε) as follows :

g(p, z, ε) = φ{(1− ε)p+ εz}

Then the directional derivative of φ(.) at p in the direc-

tion of z Fφ{p, z} is defined as follows:

Fφ{p, z} = lim
ε↓0

φ{(1− ε)p+ εz} − φ(p)
ε

= lim
ε↓0

g(p, z, ε)− g(p,0,0)
ε

=
dg(p, z, ε)

dε

∣
∣
∣
∣ ε = 0+

Whittle (1973) called Fφ the directional derivative of
φ(.) at p in the direction of z. This derivative exists

even if φ(.) is not differentiable. If φ(.) is differentiable
then

Fφ(p, z) = (p− z)T
∂φ

∂p
=

q
∑

i=1

(pi − zi)di (2)

where di =
∂φ

∂pi
i = 1,2, · · · , q. If we substitute the unit

vector ei for z then we have a vertex directional deriva-
tive Fj i.e

Fj = F (p, ej) = dj −
q
∑

i=1

pidi. (3)

We employ the directional derivative of φ(p) to deter-
mine necessary first order optimality conditions.
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4.3 Condition for local optimality :

If φ(.) is differentiable at p∗, then a necessary condition
for φ(p∗) to be a local maximum of φ(.) in the feasible
region of GOP is

F ∗
j = Fφ{p∗, ej} =

{
= 0 : if p∗j > 0
≤ 0 : if p∗j = 0

This is also a sufficient condition for a global maximum
of the GOP if φ(.) is a concave function on its feasible
region, as is the case with standard linear regression
design problems.
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5 Multiplicative Algorithm :
Maximise φ(p) = logdet(N(p)),

Subject to
∑q

i=1 pi = 1 and pi ≥ 0
The following iteration was used to solve the above
problem

p
(r+1)
k =

p
(r)
k G(F

(r)
k )

∑q
i=1 p

(r)
i G(F

(r)
i )

= Hk(p
(r)) (4)

Where

F
(r)
k =

∂φ(r)

∂pk
−

q
∑

i=1

p
(r)
i

∂φ(r)

∂pi
;

G(F ) > 0 and G′(F ) > 0

We take G(.) = Φ(.)
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6 Constraints Under PMED :

6.1 Order Constraints :

Multiple Local Maxima :
Find maximum subject to given ordering of p1, · · · , pq.

e.g. p1 < p2 < · · · < pq.
or pi1 < pi2 < · · · < piq

Transformations :

1st : u1 = pi1, uj = pij − pij−1
, j = 2, · · · , q, uj ≥ 0

1 =

q
∑

j=1

pij =

q
∑

j

cjuj where cj = q − j +1

2nd : sj = cjuj sj ≥ 0∑q
j=1 sj = 1

Algorithm :

s
(r+1)
k = Hk(s

(r)) (see ( 4))

s
(0)
k = 1

q
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6.2 Bound Constraints :

6.2.1 Common Lower Bound Only (l):

Note that 0 ≤ l ≤ 1
q
. The feasible region is a convex

polyhedron whose vertices are of the form

perm(l, · · · , l, c0), where c0 = 1− (q − 1)l
6.2.2 Common Upper Bound Only (u) :

Case I : If u is in the jth interval

1

q − (j − 1) < u <
1

q − j , j = 1, · · · , q − 1,

then u satisfies (q − (j − 1)u + cq−j = 1 where cq−j =
1− (q − j)u.
The vertices have the following form

perm(
(q−j) times
︷ ︸︸ ︷
u, · · · , u ,

(j−1) times
︷ ︸︸ ︷
0, · · · ,0 , cq−j).

Notice that the total number of these points is nu =
q!

(j−1)!(q−j)!. In general, the vertices will be on the bound-

ary of the simplex except when j = 1.

Case II : If u = 1
q−j , j = 1, · · · , q − 2, then the vertices

have the form

(
(q−j) times
︷ ︸︸ ︷
u, · · · , u ,

j times
︷ ︸︸ ︷
0, · · · ,0).
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6.2.3 Common Lower and Upper Bound :

For problems with simultaneous common lower and up-
per bounds i.e. constraints of the type l ≤ pi ≤ u, where
0 < l < 1

q
< u < 1, the feasible region is again a regular

convex polyhedron with one of the following types of
vertex.

Type (1) : For i = 0, · · · , q

perm(
i times
︷ ︸︸ ︷
u, · · · , u,

q−i times
︷ ︸︸ ︷

l, · · · , l)
where iu+(q−i)l = 1, (Note this includes the possibility
of i = 0 and i = q)

Type (2) : For i = 0, · · · , q − 1

perm(
i times
︷ ︸︸ ︷
u, · · · , u,

(q−i−1) times
︷ ︸︸ ︷

l, · · · , l , ci),

where ci = 1−{(q− i−1)l+ iu} and (q− i−1)l+ iu < 1

If (u, l) lies on the line iu+ (q − i)l = 1 for i = 1, · · · , q
then the vertices are of the first type. Note that in the
cases i = 0 and i = q there is only one vertex namely
the common blend (1

q
, 1
q
, · · · , 1

q
) (viewed as l = 1

q
when

i = 0 and u = 1
q
when i = q). This is the only feasible

mixture.
Otherwise (u, l) must for some i ( i = 0, · · · , q − 1) lie
on or between the lines iu+ (q − i)l = 1 and (i+1)u+
(q − i− 1)l = 1.
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Note that in the cases i = 0 and i = q − 1 the vertices
are respectively of the forms

perm(l, · · · , l, c0), where c0 = 1− (q − 1)l
and

perm(u, · · · , u, cq−1),where cq−1 = 1− (q − 1)u.
Since c0 < u and cq−1 > l under the relevant conditions
c0 and cq−1 are in effect revised upper and lower bounds
respectively in these two extreme cases.
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6.3 Simultaneous Order and Bound Constraints :

6.3.1 Common Lower Bound and Order Constraints :

This is a variation on case 6.1 but with u1 = pi1 − l. So
we linearly transform the variables p1, · · · , pq to variables
s1, · · · , sq leading to another example of GOP. i.e.

s = Bp, (5)

where B is a non singular square matrix of order q, AND

q
∑

i=1

si = 1 and si ≥ 0; i = 1, · · · , q (6)

are automatically satisfied. Hence, it is an example of
GOP. Can be solved using the Multiplicative algorithm.
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6.3.2 Common Upper or (Upper and Lower)
Bound and Order Constraints :

Similarly, we transform the variables p1, · · · , pq to t1, · · · , tq+1,
which must be nonnegative and satisfy 2 equations :

1TH(u− l)t = 1THb

1T t = 1

where H = (BTB)−1BT , b = (−l,0, · · · ,0, u)T and

B =








1 0 0 · · · 0 0
−1 1 0 · · · 0 0
... ... ... ... ... ...
0 0 0 · · · −1 1
0 0 0 · · · 0 −1








(7)

So t must lie in a convex polyhedron whose vertices are
the BFS of the above system of equations i.e.

t =

m∑

i=1

λivi (8)

for some λ1, · · · , λm, substituting λi ≥ 0,
∑m

i λi = 1.

So we have transformed to a problem of optimising the
D-criterion with respect to the convex weights λ1, · · · , λm
of the vertices v1, · · · , vm. Again this is a special case
of GOP which can be solved using the Multiplicative
algorithm.
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7 Example :
Assume a design for a 7-mixture experiment consists of
66 design points 63 are subsets of all possible permuta-
tions of the fixed proportions (p1, p2, · · · , p7) and 3 are
replicates of the point (1

7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
). Assume the fol-

lowing constraints:

(1) Bound constraints : l = 0.1, u = 0.4, where l is
the common lower bound and u the common upper
bound. Note that with just these constraints the
feasible region has vertices

Perm(0.1,0.1,0.1,0.1,0.1,0.1,0.4)

(2) Order Constraints : in addition suppose we want
to find the D-optimal value subject to p6 ≤ p3 ≤
p1 ≤ p7 ≤ p2 ≤ p5 ≤ p4. The vertices of the feasible
region in terms of the transformed variables t =
(t1, t2, · · · , t7) are :

ṽ1 = (0,0,0,0,0,0,1,0), ṽ2 = (0,0,0,0,0,0.5,0, .5),

ṽ3 = (0,0,0,0,
1
3
,0,0, 2

3
), ṽ4 = (0,0,0,

1
4
,0,0,0, 3

4
),

ṽ5 = (0,0,0.2,0,0,0,0, .8), ṽ6 = (0,
5
6
,0,0,0,0,0, 1

6
),

ṽ7 = (
1
7
,0,0,0,0,0,0, 6

7
).
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In terms of p’s they are:

v1 = (.1, .1, .1, .4, .1, .1, .1),
v2 = (.1, .1, .1, .25, .25, .1, .1),
v3 = (.1, .2, .1, .2, .2, .1, .1),
v4 = (.1, .175, .1, .175, .175, .1, .175),
v5 = (.16, .16, .1, .16, .16, .1, .16),
v6 = (.35, .35, .35, .35, .35, .1, .35),

v7 = (
1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, 1
7
, ).

The D-optimal solution is p1 = p2 = p3 = 0.1, p4 =
0.304485, p5 = 0.195515, p6 = p7 = 0.1. These were
found using the multiplicative algorithm. The following
Table shows the local D-optimal values and D-efficiencies
subject to the same common lower and upper bounds
l = .1, u = .4 and to 12 different order constraints. With
2 or 3 exceptions D-efficiencies are all relatively high.

No. (p1, p2, p3, p4, p5, p6, p7)
28
√

D∗ D-efficiency
1 (.1,.1,.1,.30541,.19459,.1,.1) .0025 75.73%
2 (.1,.30541,.1,.1,.1,.19459,.1) .0032 100 %
3 (.1,.19459,.1,.1,.1,.30541,.1) .0032 100 %
4 (.1,.19459,.1,.1,.30541,.1,.1) .0029 90.96 %
5 (.1,.1,.1,.1,.1,.19459,.30541) .0029 90.96 %
6 (.1,.1,.1,.19459,.1,.1,.30541) .0029 90.96 %
7 (.30541,.1,.1,.1,.1,.19459,.1) .0029 90.96%
8 (.1,.1,.19459,.1,.30541,.1,.1) .0029 90.96 %
9 (.19459,.1,.30541,.1,.1,.1,.1) .0032 100 %
10 (.1,.19459,.1,.1,.1,.30541,.1) .0032 100 %
11 (.290937,.154532,.154532,.1,.1,.1,.1) .0018 55.50 %
12 (.1,.1,.1,.283948,.129722,.186329,.1) .0015 45.64 %
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