Phase I Monitoring of Nonlinear Profiles

James D. Williams

William H. Woodall

Jeffrey B. Birch

May 22, 2003

Profile Monitoring

Scenario

- Monitor a process or product whose quality cannot be assessed by a single quality characteristic
- Measure across some continuum (a sequence of time, space, etc.) producing a "profile"
- Various profile shapes:
 - Linear Profiles: (Kang and Albin (2000), Kim, Mahmoud, and Woodall (2003), Mahmoud and Woodall (2003))
 - Nonlinear Profiles: (Brill (2001))
- Very little work has been done to address monitoring nonlinear profiles (Woodall, *et. al.* (2003))

Profile Monitoring

Path forward

- Brill's (2001) method
- Suggest two more methods
- Illustrate methods with nonlinear profile data
- Recommendations

Example 1: Vertical Density Profile (VDP)

Board A1 from Walker and Wright (2002, JQT)

J.D. Williams, Bill Woodall, Jeff Birch, Virginia Tech

Example 2: Dose-Response Profile of a Drug

J.D. Williams, Bill Woodall, Jeff Birch, Virginia Tech

Phase I Analysis: Historical Data

J.D. Williams, Bill Woodall, Jeff Birch, Virginia Tech

Brief Intro to Nonlinear Regression Models

Simple Case: One Y and one X

$$y_i = f(x_i, \boldsymbol{\beta}) + \mathcal{E}_i \qquad i = 1, \dots, n$$

where

 \mathcal{Y}_i is the ith response

 $f(x_i, \beta)$ is an appropriate nonlinear function

 X_i is the ith regressor variable value

B is the $p \times 1$ vector of parameters to estimate

7

 \mathcal{E}_i is the ith residual error

Brief Intro to Nonlinear Regression Models

 $\hat{\boldsymbol{\beta}}_i$ obtained iteratively for each sample

$$\hat{Var}(\hat{\boldsymbol{\beta}}_i) = \hat{\sigma}^2 (\hat{\mathbf{D}}'_i \hat{\mathbf{D}}_i)^{-1} = \mathbf{C}_i$$

where $\hat{\mathbf{D}}_{i}$ is the estimated derivative matrix used in the estimation of the nonlinear regression parameters

Parameter Estimates from Historical Data

J.D. Williams, Bill Woodall, Jeff Birch, Virginia Tech

How to Monitor Nonlinear Profiles

- Ideally, monitor each parameter independently
- <u>Problem</u>: parameter estimates are correlated in nonlinear regression
- Cannot monitor each parameter separately, so use a multivariate T^2 control chart to monitor the parameters simultaneously

Multivariate T² Control Chart Statistic

General form of the T^2 statistic:

$$T_i^2 = \left(\hat{\boldsymbol{\beta}}_i - \overline{\hat{\boldsymbol{\beta}}}\right)' \mathbf{S}^{-1} \left(\hat{\boldsymbol{\beta}}_i - \overline{\hat{\boldsymbol{\beta}}}\right) \quad i = 1, \dots, m$$

 \mathbf{S} is the covariance matrix of parameter estimates

Three Choices for S

Method 1: Sample Covariance Matrix (Brill, 2001)

$$\mathbf{S}_{1} = \frac{1}{m-1} \sum_{i=1}^{m} \left(\hat{\boldsymbol{\beta}}_{i} - \overline{\hat{\boldsymbol{\beta}}} \right) \times \left(\hat{\boldsymbol{\beta}}_{i} - \overline{\hat{\boldsymbol{\beta}}} \right)'$$

- <u>Pros</u>: Easy to calculate
 - Widely used and easily understood
- <u>Cons</u>: Greatly affected by shifts in mean vector
 - Results in low power for the T^2 control chart

Three Choices for S

Method 2: Successive Differences (Holmes and Mergen, 1993)

Let
$$\mathbf{V}_{i} = \hat{\boldsymbol{\beta}}_{i+1} - \hat{\boldsymbol{\beta}}_{i}$$
 $i = 1, \dots, m-1$
 $\mathbf{V} = \begin{bmatrix} \mathbf{v}_{1}' \\ \mathbf{v}_{2}' \\ \mathbf{v}_{m-1}' \end{bmatrix}$ Then $\mathbf{S}_{2} = \frac{\mathbf{V}'\mathbf{V}}{2(m-1)}$

- <u>**Pros</u>:** Like moving range with individual observations</u>
 - Not effected by shifts in the mean vector
 - High power
- <u>Cons</u>: Less statistical theory developed to date

Three Choices for S

Method 3: Intra-Profile Pooling

For each of the *m* samples:
$$Var(\hat{\boldsymbol{\beta}}_i) = \hat{\sigma}^2 (\hat{\boldsymbol{D}}'_i \hat{\boldsymbol{D}}_i)^{-1} = \mathbf{C}_i$$

Then
$$\mathbf{S}_3 = \frac{1}{m} \sum_{i=1}^m \mathbf{C}_i$$

- <u>**Pros</u>: Uses information from nonlinear regression estimation**</u>
- <u>Cons</u>: Does not account for profile-to-profile common cause variability

J.D. Williams, Bill Woodall, Jeff Birch, Virginia Tech 2003 Quality & Productivity Research Conference, Yorktown Heights, NY 14

Three Choices for T_i^2

<u>Three formulations of the T^2 statistic:</u>

Method 1: Sample
Covariance Matrix
$$T_{1,i}^{2} = \left(\hat{\boldsymbol{\beta}}_{i} - \overline{\hat{\boldsymbol{\beta}}}\right)' \mathbf{S}_{1}^{-1} \left(\hat{\boldsymbol{\beta}}_{i} - \overline{\hat{\boldsymbol{\beta}}}\right)$$
Method 2: Successive
Differences
$$T_{2,i}^{2} = \left(\hat{\boldsymbol{\beta}}_{i} - \overline{\hat{\boldsymbol{\beta}}}\right)' \mathbf{S}_{2}^{-1} \left(\hat{\boldsymbol{\beta}}_{i} - \overline{\hat{\boldsymbol{\beta}}}\right)$$
Method 3: Intra-Profile
Pooling
$$T_{3,i}^{2} = \left(\hat{\boldsymbol{\beta}}_{i} - \overline{\hat{\boldsymbol{\beta}}}\right)' \mathbf{S}_{3}^{-1} \left(\hat{\boldsymbol{\beta}}_{i} - \overline{\hat{\boldsymbol{\beta}}}\right)$$

Upper Control Limits

Method 1: Sample Covariance Matrix

$$T_1^2 \frac{m}{(m-1)^2} \sim Beta\left(\frac{p}{2}, \frac{m-p-1}{2}\right)$$

As discussed by Sullivan and Woodall (1996)

$$UCL_{1} = \frac{(m-1)^{2}}{m} B_{1-\alpha, p/2, (m-p-1)/2}$$

Upper Control Limits

Method 2: Successive Differences

Approximately
$$T_2^2 \frac{m}{(m-1)^2} \sim Beta\left(\frac{p}{2}, \frac{f-p-1}{2}\right)$$

where $f = \frac{2(m-1)^2}{3m-4}$

For more information, see Scholz and Tosch (1994)

$$UCL_{2} = \frac{(m-1)^{2}}{m} B_{1-\alpha,p/2,(f-p-1)/2}$$

Upper Control Limits

Method 3: Intra-Profile Pooling

We think that
approximately
$$T_3^2 \frac{m(m-p)}{p(m-1)(m+1)} \sim F(p,m-p)$$
$$UCL_3 = \frac{m(m-p)}{p(m-1)(m+1)} F_{1-\alpha,p,m-p}$$

Control limits are best approximations so far

Illustration: VDP Data

Depth

2003 Quality & Productivity Research Conference, Yorktown Heights, NY

Nonlinear Function to Model VDP Data

Use a "bathtub" function to model each board from the VDP data

$$f(x_i, \mathbf{\beta}) = \begin{cases} a_1(x_i - d)^{b_1} + c & x_i > d \\ a_2(-x_i + d)^{b_2} + c & x_i \le d \end{cases}$$

where

e X_i is the ith regressor variable value $\begin{pmatrix} a_1 \\ a_2 \\ b_1 \\ b_2 \\ c \\ d \end{pmatrix} \neq \text{determine the "flatness" of the "bathtub"}$

Nonlinear Function to Model VDP Data

Board #1 from Walker and Wright (2002, JQT)

Nonlinear Function to Model VDP Data

Estimated nonlinear profile of Board #1

$$f(x_i, \hat{\boldsymbol{\beta}}) = \begin{cases} 5708(x_i - 0.313)^{5.14} + 46.0 & x_i > 0.313\\ 3921(-x_i + 0.313)^{4.87} + 46.0 & x_i \le 0.313 \end{cases}$$

- Estimate profile for each board
- Calculate S_1 , S_2 , and S_3 .

• Calculate
$$T_1^2$$
, T_2^2 , and T_3^2

J.D. Williams, Bill Woodall, Jeff Birch, Virginia Tech 2003 Quality & Productivity Research Conference, Yorktown Heights, NY 22

T_1^2 Control Chart

J.D. Williams, Bill Woodall, Jeff Birch, Virginia Tech

T_2^2 Control Chart

J.D. Williams, Bill Woodall, Jeff Birch, Virginia Tech

T_1^2 and T_2^2 Control Charts

J.D. Williams, Bill Woodall, Jeff Birch, Virginia Tech

Board 15

J.D. Williams, Bill Woodall, Jeff Birch, Virginia Tech

Board 18

Boards 3 and 6

2003 Quality & Productivity Research Conference, Yorktown Heights, NY 29

Conclusions

- Method 1 (sample covariance matrix) does not take into account the sequential sampling structure of the data:
 - The overall probability of detecting a shift in the mean vector will decrease (See Sullivan and Woodall, 1996)
 - Should not be used
- Method 2 (successive differences) accounts for the sequential sampling scheme, and gives a more robust estimate of the covariance matrix
- In the VDP example, both Methods 1 and 2 gave same result because
 - No apparent shift in the mean vector
 - There were only about two outliers

Conclusions

- Method 3 (intra-profile pooling) should be used when there is no profile-to-profile common cause variability
- Comparison of the three methods:
 - Method 1 assumes all variability is due to common cause
 - Method 3 assumes that no variability is due to common cause
 - Method 2 is somewhere in the middle

Issue: Monitoring parameters versus monitoring the fitted curves

References

- Brill, R. V. (2001). "A Case Study for Control Charting a Product Quality Measure That is a Continuous Function Over Time". Presentation at the 45th Annual Fall Technical Conference, Toronto, Ontario.
- Holmes, D. S., and Mergen, A. E. (1993). "Improving the Performance of the *T*² Control Chart". *Quality Engineering* **5**, pp. 619-625.
- Kim, K., Mahmoud, M. A., and Woodall, W. H. (2003). "On The Monitoring of Linear Profiles". To appear in the *Journal of Quality Technology*.
- Mahmoud, M. A., and Woodall, W. H. (2003), "Phase I Monitoring of Linear Profiles with Calibration Applications", Submitted to *Technometrics*.
- Scholz, F. W., and Tosch, T. J. (1994), "Small Sample Uni- and Multivariate Control Charts for Means". *Proceedings of the American Statistical Association, Quality and Productivity Section.*
- Sullivan, J. H., and Woodall, W. H. (1996), "A Comparison of Multivariate Quality Control Charts for Individual Observations". *Journal of Quality Technology* **28**, pp. 398-408.
- Walker, E., and Wright, S. P. (2002). "Comparing Curves Using Additive Models". *Journal of Quality Technology* **34**, pp. 118-129.
- Woodall, W. H., Sptizner, D. J., Montgomery, D. C., and Gupta, S. (2003). "Using Control Charts to Monitor Process and Product Profiles". Submitted to the *Journal of Quality Technology*.