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Profile Monitoring
Scenario

• Monitor a process or product whose quality cannot be 
assessed by a single quality characteristic

• Measure across some continuum (a sequence of time, 
space, etc.) producing a “profile”

• Various profile shapes:

• Linear Profiles:  (Kang and Albin (2000), Kim, 
Mahmoud, and Woodall (2003), Mahmoud and 
Woodall (2003))

• Nonlinear Profiles:  (Brill (2001))

• Very little work has been done to address monitoring 
nonlinear profiles (Woodall, et. al. (2003))
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Profile Monitoring

Path forward

• Brill’s (2001) method

• Suggest two more methods

• Illustrate methods with nonlinear profile data

• Recommendations
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Example 1:  Vertical Density Profile (VDP)

Board A1 from Walker and Wright (2002, JQT)
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Example 2:  Dose-Response Profile of a Drug
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Phase I Analysis:  Historical Data
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Brief Intro to Nonlinear Regression Models

Simple Case:  One Y and one X

iii xfy ε+= ),( β ni ,,1K=
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is the ith response

is an appropriate nonlinear function

is the ith regressor variable value

is the p×1 vector of parameters to estimate

iε is the ith residual error

where



J.D. Williams, Bill Woodall, Jeff Birch, Virginia Tech         2003 Quality & Productivity Research Conference, Yorktown Heights, NY 8

Brief Intro to Nonlinear Regression Models

iβ̂ obtained iteratively for each sample

( ) ( ) iiiiVar CDDβ =′=
−12 ˆˆˆˆ σ^

iD̂where is the estimated derivative matrix used in the  
estimation of the nonlinear regression 
parameters 
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Parameter Estimates from Historical Data
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How to Monitor Nonlinear Profiles

• Ideally, monitor each parameter independently

• Problem:  parameter estimates are correlated in 
nonlinear regression

2T
• Cannot monitor each parameter separately, so use 

a multivariate        control chart to monitor the 
parameters simultaneously
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Multivariate T2 Control Chart Statistic

General form of the statistic:2T
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S is the covariance matrix of parameter estimates
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Three Choices for S

Method 1:  Sample Covariance Matrix  (Brill, 2001)
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Pros: • Easy to calculate

• Widely used and easily understood

Cons: • Greatly affected by shifts in mean vector

• Results in low power for the       control chart2T
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Three Choices for S

Method 2:  Successive Differences (Holmes and Mergen, 1993)
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Pros: • Like moving range with individual observations

• Not effected by shifts in the mean vector

• High power

Cons: • Less statistical theory developed to date
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Three Choices for S

Method 3:  Intra-Profile Pooling

For each of the m samples: ( ) ( ) iiiiVar CDDβ =′=
−12 ˆˆˆˆ σ^

∑
=

=
m

i
im 1

3
1 CSThen

Pros: • Uses information from nonlinear regression estimation

Cons: • Does not account for profile-to-profile common 
cause variability
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Three Choices for T 2
i

Three formulations of the statistic:2T
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Upper Control Limits

Method 1:  Sample Covariance Matrix
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As discussed by Sullivan and Woodall (1996)
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Upper Control Limits

Method 2:  Successive Differences
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Upper Control Limits

Method 3:  Intra-Profile Pooling
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Control limits are best approximations so far
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Illustration:  VDP Data

VDP of 24 Particle Boards
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Nonlinear Function to Model VDP Data

Use a “bathtub” function to model each board from the VDP data
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ix is the ith regressor variable valuewhere

determine the width of the “bathtub”

determine the “flatness” of the “bathtub”  

is the bottom of the “bathtub”  
is the center of the “bathtub”  
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Nonlinear Function to Model VDP Data

VDP

Nonlinear fit

Board #1 from Walker and Wright (2002, JQT)



J.D. Williams, Bill Woodall, Jeff Birch, Virginia Tech         2003 Quality & Productivity Research Conference, Yorktown Heights, NY 22

Nonlinear Function to Model VDP Data

Estimated nonlinear profile of Board #1
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• Estimate profile for each board 

• Calculate S1, S2, and S3.
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2T 2
3Tand• Calculate
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Control Chart2
1T

UCL = 9.62
1T

Board #15

Board #18
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Control Chart2
2T

UCL = 14.12
2T

Board #15 Board #18
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and       Control Charts2
2T2
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Board 15
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Board 18
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Control Chart2
3T

According to our UCL, all of 
the boards are out-of-control 

UCL

Board #3
Board #6
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Boards 3 and 6

Board 3

Board 6
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Conclusions

• Method 1 (sample covariance matrix) does not take into 
account the sequential sampling structure of the data:

• The overall probability of detecting a shift in the mean 
vector will decrease (See Sullivan and Woodall, 1996)

• Should not be used

• Method 2 (successive differences) accounts for the 
sequential sampling scheme, and gives a more robust 
estimate of the covariance matrix

• In the VDP example, both Methods 1 and 2 gave same 
result because

• No apparent shift in the mean vector

• There were only about two outliers
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Conclusions

• Method 3 (intra-profile pooling) should be used when 
there is no profile-to-profile common cause variability

• Comparison of the three methods:

• Method 1 assumes all variability is due to common 
cause

• Method 3 assumes that no variability is due to 
common cause

• Method 2 is somewhere in the middle

Issue:  Monitoring parameters versus monitoring the fitted curves
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