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Lymphoma Microarray Survival Data

• Diffuse large-B-cell lymphoma has an annual incidence
in U.S. of more than 25,000 cases.

• Combination chemotherapy, 35% to 40% survival rate

• International prognostic index (age, tumor stage, etc) is a
well-established outcome predictor. However, the
outcome in patients with identical IPI values varies
considerably.

• Hypothesis: gene expression profiles could be used
independently of IPI to predict the patients survival after
chemotherapy.
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Rosenwald et al. (NEJM 2002) Data Set

• 240 patients with diffuse large-B-cell lymphoma

• 42% survival rate, median follow-up 2.8 years overall,
and 7.3 years for survivors

• Gene expression profiles of 7399 genes

• 160 patients in the training group, and 80 patients in the
testing group

• Our focus: use gene expression to predict censored
continuous phenotype, i.e., patients survival time.
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Survival Data Analysis

• Notations:

– T : survival time, C: censoring time

– y = min(T, C), δ = I(T < C)

– X = (x1, . . . , xp)
T: gene expression levels of p genes

– Observed sample data: {yi, δi, Xi}
n
i=1

• A general Cox proportional hazards model

λ(t|X) = λ0(t) exp{f(X)} = λ0(t) exp{β1x1 + . . . + βpxp}
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Challenges

• Challenges:

– Phenotype (survival time) is right-censored.

– n << p, where p = 7399, n = 240, no unique solution
for Cox proportional hazards model

• Goal of dimension reduction: find d surrogate predictors,
s1, . . . , sd, such that,

– Contain all the information about patients survival time

– d << p and d < n

– Fit a model using s1, . . . , sd as predictors, e.g.,

λ(t|X) = λ0(t) exp{f(s1, . . . , sd)}
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Sufficient Dimension Reduction

• Goal of sufficient dimension reduction:

– Find a p × d matrix η = (η1, . . . , ηd), d ≤ p, such that

T X | ηTX

– Replace X with ηTX = (ηT
1X, . . . , ηT

dX)

– without loss of information on regression T |X

– without assuming any model or distribution for T |X

• Key concept – Central subspace: ST |X

T X | ηTX ⇒ SDRS = Span(η) ⇒ ST |X = ∩SDRS
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Sliced Inverse Regression

• Surrogate predictors: (s1, . . . , sd) = (ηT
1X, . . . , ηT

dX)

– First d eigenvectors of the eigen-decomposition

ΣX|T ηi = λi ΣX ηi

where ΣX|T = Cov(E(X |T )), and ΣX = Cov(X)

– Asymptotic test is available to determine d

• To estimate ΣX|T , slicing of T is needed, i.e., partitioning
T into fixed non-overlapping slices

• Theoretical justification:

Span{Cov(E(X |T ))} ⊆ ST | X

8



Modification of SIR to Censored Data

• True survival time T is unobservable

• Since (y, δ) is a function of (T, C), one can show that

S(y,δ) | X ⊆ S(T,C) | X

• Algorithm:

– Double slicing of (y, δ) (rather than slicing of T )

– The rest are the same as a standard SIR

• Combine SIR with Principal Component Analysis (PCA)

• Fit any model, e.g. a Cox proportional hazards model,
using extracted SIR components as predictors
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Survival Time versus SIR Component
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Figure 1: dot: patients who were dead; circle: patients who were alive. A

Cox proportional hazards model: λ(t|X) = λ0(t) exp{0.242s− 0.005s
2}
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Overall Survival in Predicted Risk Groups
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Figure 2: Survival curves for patients in two risk groups with positive and

negative estimated scores. Training data (left); Testing data (right)
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Area Under ROC Curve
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Figure 3: Area under ROC at time 1 year to 10 years for 5-fold cross-

validation. Training data (left); Testing data (right)
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Comparison with Existing Methods
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Figure 4: Comparison with principal components Cox models. Training

data (left); Testing data (right)

13



Future Work

• Identify predictive genes based on built model

• Study prediction power by combining IPI and gene
expression profiles

• Study treatment effect after adjusting for individual gene
expression pattern

• Combine sufficient dimension reduction with gene
networks inference
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