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1 Introduction

Some notation:

The notation U V |Z means that the random vectors

U and V are independent given any value for the random

vector Z.

Subspaces will be denoted by S, and S(B) means the sub-

space of Rt spanned by the columns of t × u matrix B.

PB denotes the projection operator for S(B) with respect

to the usual inner product and QB = I − PB.

The most common goal of a regression is to infer about

the conditional mean of Y |X. That is, traditionally Y =

E(Y |X) + ε, where ε is independent of X.
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In dimension reduction, we mainly consider regressions in

which E(Y |X) depends on X through βTX of the predictors.

Simply,

E(Y |X) = E(Y |βTX) = g(βTX)

More precisely, we want to identify the central mean subspace

defined by Cook and Li (2002). That is, we assume that for

some p × q matrix β

Y E(Y |X)|βTX. (1)

The subspace spanned by the columns of β is a mean di-

mension reduction subspace. If the intersection of all the

mean dimension reduction subspace is itself a mean dimen-

sion reduction subspace, then it is a central mean subspace

(Cook and Li 2002), denoted by SE(Y |X).

We assume that the central mean subspace exists, and our

goal is to identify it.
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Some short review:

Single-index conditional mean: q = 1. Härdle & Stoker

(1989) developed the average derivative estimation (ADE).

Others: McCullagh & Nelder, (1989). (Friedman & Stuetzle,

1981; Hall, 1989; Härdle et al., 1993; Hristache et al., 2001).

Xia et al. (2002) considered local polynomials for estimat-

ing β with q > 1.

Ordinary least squares (OLS) (LI and Duan 1989, Cook

and Li 2002), under the condition that E(X|βTX) is a linear

function of βTX.

Principal Hessian directions (phd,Li, 1992), under con-

stant variance of var(X|βTX), and Fourth moments meth-

ods (FM, Yin and Cook, 2004), under symmetric condition

of X|βT
TX.
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We shall consider two scenarios on how the data (Yi, X
T
i ),

i = 1, . . . , n, are generated.

One is random design model, that is, the data (Yi, XT
i ),

i = 1, . . . , n, are iid observations on (Y , XT ), which has a

joint distribution.

The other is fixed design model, that is, the X variables

are nonstochastic, often assumed to be equidistributed on a

bounded interval. And without loss of generality, it can be

assumed on [0, 1]p. See Härdle (1990, p. 21) and Eubank

(1999).

However, the basic ideas for them are the same. We mostly

deal with the random design, sometimes we present the idea

in fixed design to simplify the discussion.
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2 Motivation

To simplify our discussion, let q = 1 so that β = β0 is a

p × 1 vector, and βT
0 β0 = 1 for its identifiability.

And we also assume X has fixed design. Suppose that

E(Y |X) = g(βT
0 X) with known β0, and that Bj(X) for

j = 1, ..., J are basis functions which together with J will

be chosen later. Suppose that we can write the model as the

following

yi = g(βT
0 Xi) + ε =

∞
∑

j=1

θjBj(β
T
0 Xi) + ε. (2)

Where g is an unknown function, and E(ε|X) = 0. The last

condition allows ε to be dependent on X.

Model (2) hold under many circumstances (Eubank 1999;

Fan and Gijbels 1996). For example, if g ∈ C[0, 1], a con-

tinuous function, then one can use orthogonal polynomial

function for Bj; if g ∈ L2[0, 1], a square integrable function,

then one can use Fourier functions for Bj.
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The direction β0 is then the solution of

min
β

{E[y − E(y|βTX)]2}.

In modeling the mean function, typically let SJ(βT
0 X) =

∑J
j=1 θjBj(β

T
0 X), then in practice we find an estimator of g

by minimizing the following term:

RSSJ(β0, θ) =

n
∑

i=1

[yi −
J

∑

j=1

θjBj(β
T
0 Xi)]

2 (3)

The minimization in equation (3) is actually over J and θ,

where θ = (θ1, ..., θJ)T . For a fixed J , we solve the normal

equation, and find the estimates of θ. Once found, we put

them back in SJ(βT
0 X) for an estimate. If J is not known,

there are many ways to choose the best J in estimating g

(see Eubank 1999).
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More specifically, suppose that β and J are temporarily

fixed, then define a n × J matrix

BJ(β) = (Bj(β
TXi))i=1,...,n;j=1,...,J

Further suppose that BJ(β) has full rank, then

θ = (θ1, ..., θJ)T = (BJ(β)TBJ(β))−1BJ(β)Ty,

where y = (y1, ..., yn)T is the vector of response values. Thus

putting this θ back into RSSJ(β, θ), that is,

RSSJ(β) =

n
∑

i=1

[yi − gJ(βTxi)]
2, (4)

where gJ(βTx) = (B1(β
Tx), ..., BJ(βTx))(BJ(β)TBJ(β))−1BJ(β)Ty.

1. To adapt this in dimension reduction, we find β by min-

imizing RSSJ(β) in equation (4) over β if j is fixed, or both.

2. The estimated mean function gJ(βT ) serves as only in-

termediate step, and choosing a fixed J is not so critical.

3. Note that this gJ is a special case of a linear estimator

(Eubank, 1999, p. 12). Therefore, any linear estimator can

be used this way for dimension reduction.
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3 Methods

A linear estimator is defined as

ŜJ(βTx) = n−1
n

∑

i=1

WJi(β
Tx)Yi (5)

where WJi(x) is a weight function. For random design, usu-

ally

WJi(x) =
KJ(x,xi)

n−1
∑n

i=1 KJ(x,xi)
, (6)

while for fixed design (eg. Härdle 1990),

WJi(x) = KJ(x,xi). (7)

From now on we present schemes for random design unless

otherwise stated. Similar ideas for fixed design can be de-

veloped. Once a weight function is chosen, and having set

ŜJ(βTx), assume that J is fixed, we then find an estimate

of β0 by minimizing the following over β:

RSS(J, β) =

n
∑

i=1

{yi − ŜJ(βTxi)}2 (8)

Note that ŜJ(βTxi) = aT
i y for i = 1, ..., n, and define n×n

matrix, ST
J = (a1, ..., an). If J is not fixed, we then can

simultaneously choose J and β by GCV method to minimize

the following:

GCV (J, β) =
n−1RSS(J, β)

(n−1trace[I − SJ ])2
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Choices of Basis Functions:

Polynomial basis. Polynomial regression has at least

two motivations: Taylor’s theorem (on Sobolev space Wm
2 [0, 1],

Eubank 1999) and Weierstrass approximation (on continuous

function C[0, 1]). Here we use Härdle’s (1984) set up:

KJ(x,xi) =

J
∑

j=0

Bj(β
Tx)Bj(β

Txi),

where Bj(β
TX) is Legendre polynomials (Härdle 1990, p.

52).

Links to some existing methods. If J = 1, then it is OLS

method. If J = 2, then it is q-based phd (Li 1992).

Fourier series. Any other orthogonal series function,

particularly complete orthonormal series (CONS) (Eubank

1999). Sine Cosine and Fourier series.

Kernel method.

Wavelet basis. One can follow from Antoniadis et al

(1990).

Spline method.
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4 Kernel representation and Weighted Least Squares

All previous methods linked to one method: kernel method.

Generally, the estimated mean function can be written as lin-

ear estimator: ĝ(βTX) =
∑n

j=1 WJi(β
Tx)yj, with

∑n
i=1 WJi(β

Tx) =

1. However, this is the the solution for weighted least squares.

That is,

min
η

n−1
n

∑

i=1

WJi(β
Tx)(Yi−η)2 = n−1

n
∑

i=1

WJi(β
Tx)(Yi−ĝ(βTx))2.

This observation is very interesting. For example OLS is

a dimension in the CMS if the OLS model is right or the

predictors are elliptically distributed. If not, one can use

reweighting method (Cook and Nachtsheim 1994) to achieve

elliptical distribution.

Xia et al. (2002) developed method without requiring par-

ticular distribution on predictors by using local linear approx-

imation.

Here we used (special chosen) weight functions to rewight

without requiring any particular distribution on predictors

via weight least squares to recover CMS.
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5 Multiple dimensional search

Having seen the general procedure for single index case, we

now extend it to multiple-index. We simply replace p × 1

vector β by p × q matrix β = (β1, ..., βq) under βTβ = Iq.

And multi-dimensional kernels then can be used in place of

univariate kernel.

In our application, we use product kernel for multiple di-

mensional search for its simplicity. That is, we have

KJ(βTx, βx
i ) =

q
∏

j=1

KJ(βT
j x, βT

j xi)
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6 Algorithm and practical issues

1. Epanechnikov kernel: bandwidth hn = A(q)sβ/n1/(q+4),

where A(q) is based on Silverman (1986, p.87) and sβ
is the standard deviation of t = βTX.

2. Gaussian kernel: bandwidth, hn = A(q)sβ/n1/(q+4) where

A(q) is based on Scott (1992, p. 152) and sβ is the stan-

dard deviation of t = βTX.

3. Polynomial basis: J = 15, that is, 14th order polyno-

mial of Legendre system. Data has been transformed so

that βTX = t ∈ [−1, 1], we use the following choice:

B0(t) = 1/
√

2, B1(t) = t/
√

2/3, and moreover, (m +

1)Bm+1(t) = (2m + 1)tBm(t) − mBm−1(t).

4. Cosine series: J = 12. Data has been transformed so

that βTX = t ∈ [−1, 1], we use the following choice:

B0(t) = 1/
√

2, Bj(t) = cos(jπt), for j = 1, ..., J .

5. Fourier basis: J = 12. Data has been transformed so

that βTX = t ∈ [−1, 1], we use the following choice:

B0(t) = 1/
√

2, Bcj(t) = cos(jπt), Bsj = sin(jπt) for

j = 1, ..., J .

We use matlab in our code.
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7 Consistency and Asymptotics

We assume that X ∈ [0, 1/
√

p]p without loss of generality.

Also for the ease of our exposition and in common with most

investigation of this type (See Hall 1989, Härdle et al. 1993),

we confine our attention to one-dimensional case: d = 1.

Due to the constraint of βTβ = 1, t = βTx ∈ [0, 1]. Write

gnh(t) (instead of ŜJ(t) in equation 5)) to be the estimated

mean function of g(t), where h is the bandwidth relating

to n. Note that under the assumption of the existence of

the central mean subspace, β0 is unique. We then have the

following result.

Theorem 1 Suppose that E|Y | < ∞ and E(|g(βTX)| <

∞ for any β. In addition, g(t) is uniformly continuous

in t ∈ [0, 1] and β, where t = βTx. If with probability

1, as n → ∞, sup
x∈[0,1]p,β |gnh(β

Tx)− g(βTx)| → 0, then

with probability 1, βnh → β0 as n → ∞.

Lemma 1 Under some regularity conditions, with prob-

ability one, sup
x∈[0,1]p,β |gnh(β

Tx) − g(βTx)| → 0.

Theorem 2 Under certain regularity conditions, then there

is a constant C such that for any positive ε and for n suf-

ficiently large, P [|βnh − β0| > ε] ≤ C/(nh4ε2).
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8 Estimating the dimensionality of CMS

There are are several ways to estimate the dimension d of

the CMS, such as bootstrap method used by Ye and Weiss

(2003) or Cross-validation method used by Xia et al. (2002).

For bootstrap method we can follow exactly the idea by

Ye and Weiss (2003) to calculate the distances between di-

rections or subspaces.

Cross-validation method: Let

âd,j =

n
∑

i=1,i 6=j

Khd
(i, j)yi/

n
∑

i=1,i 6=j

Khd
(i, j),

where Khd
(i, j) = Khd

{β̂T

1 (Xi−Xj), ..., β̂
T

d (Xi−Xj)}. Let

CV (d) = n−1
n

∑

j=1

(yi − âd,j)
2, d = 1, ..., p.

And define CV (0) = n−1
∑n

j=1(yi − ȳ)2.

We choose d0 to be the first valley of CV (d) among all

CV (d).
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9 Projection pursuit regression type

Our method is similar to projection pursuit regression (Fried-

man and Stuetzle, 1981; Huber 1985), though our motivation

is quite different. The main goal of PPR is to estimate the re-

gression function. While our goal is to reduce the dimension,

the regression function serves an intermediate step. This dif-

ference may put advantages in our method as we shall see in

our examples later.

When kernel is used, our approach is very much like the

ones used by Hall (1989) and Härdle et al. (1993) for first

projection pursuit approximation. Here we may think that

our method is a repeatedly one step projection pursuit re-

gression with multiple dimensions.

Related to the results from Hall (1989) and Härdle et al.

(1993), better rates of convergence for the estimated direc-

tion can be obtained for our scheme by using leave one out

procedure.

To further explore the difference between the usual pro-

jection pursuit regression and our approach, we next develop

corresponding methods for other subspaces.
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10 Other subspaces and Inverse method links

Central kth moment subspace and CS:

Our method also can be used to find CKMS (Yin and

Cook 2002) and CS (Cook, 1994a,b, 1996). Assuming that

conditional moment generating function exists, then

E(ety|X) =

∫

etyp(y|x)dy =

∞
∑

k=0

tk

k!
E(Y k|X)

Thus with gk
J(βTx) = n−1

∑n
j=1 Wnj(β

Tx)yk
j , and under

ββ = Iq, we find each moment function by minimizing (for

fixed k)

RSS(k, β) =

n
∑

i=1

(yk
i − gJ(βTxi))

2 (9)

Using CV method to obtain the estimate βk for each k =

1, ....K, and finally using SVD method to the following ma-

trix

Σ =

K
∑

k=1

βkβ
T
k

to find the non zero eigenvalues and their corresponding

eigenvectors. Practically, we choose K = 2 for the most

important moments in regressions are the first twos. If all

the βk’s are the same, then a final estimate can be obtained

by minimizing
∑K

k=1 RSS(k, β).
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Partial CMS and Partial CS:

When there is a categorical variable W for W = 1, ..., C,

a more appropriate subspace perhaps is Partial CMS (Li,

Cook and Chiaromonte, 2002). Our method also can be fur-

ther developed to aim at this subspace. In such a case, simply

we modify equation (4) to be the following:

RSS(w, β) =

nw
∑

i=1

(yi − gJ(βTxi))
2 (10)

For each w we find the best βw by CV method, and finally

using SVD method to the following matrix

Σ =

C
∑

w=1

βwβT
w

to find the non zero eigenvalues and their corresponding

eigenvectors. If all the βw’s are the same, then a final es-

timate can be obtained by minimizing
∑C

w=1 RSS(w, β).

Combine this ideas with the procedure in Section 10, we

also can find dimensions in the partial CKMS and partial CS.

Inverse method:

A dual of our method is the inverse method. Under the lin-

earity conditions, suppose X is already standardized with 0

mean and variance I . With g
β
J (y) = n−1

∑n
j=1 Wnj(y)βTXj,

and we switch the role of y and βTx in equation 4. Which

is equivalent to the kernel method by Zhu and Fang (1996).
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11 Examples

Let re, rg, rp(J), rc(J) and rf(J) be the correlation coeffi-

cients between the true variable and the estimated variable,

respectively by the corresponding methods. We use vector of

elements with all 1’s as initial vector unless otherwise stated

with sample size n = 200.

Model 1: Quadratic model. Let p = 10, X ∼ Np(0, I),

and ε ∼ N(0, 1). The model is Y = βTX + (βTX)2 + .5ε,

where βT = (1, 1, 0, ..., 0).

Model 2: Exponential model. This simulation is simi-

lar to the model used by Fan and Gijbels (1995). Let p = 10,

X1 ∼ U(−2, 2), and X2, ..., X10, ε are iid N(0, 1). The

model is Y = sin(2βTX) + 2e−16(β
T
X)2 + .3ε, where βT =

(1, 0, 0, ..., 0).

Model 3: Nonlinear regression. Let p = 10, X1, ..., X10, ε

are iid N(0, 1). The model is Y =
β

T
X

(.5+(β
T
X+1.5)2)

+.5ε, where

βT = (1, 0, 0, ..., 0).
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Model 4: Non differentiable regression. Let p = 10,

X1, ..., X10 are iid U(0, 1), and ε ∼ N(0, 1). With βT =

(1, 0, 0, ..., 0), the model is

Y = 8βTX + .2ε, if βTX ∈ (0, .25);

4 − 8βTX + .2ε, if βTX ∈ [.25, .5);

.2ε, if βTX ∈ [.5, .75);

4βTX − 3 + .2ε, if βTX ∈ (.75, 1).

Model 5: Discontinuous regression. Let p = 10,

X2, ..., X10, ε are iid N(0, 1), and ε ∼ U(0, 1). With βT =

(1, 0, 0, ..., 0), the model is

Y = 8βTX + .2ε, if βTX ∈ (0, .25);

.2ε, if βTX ∈ [.75, 1);

8 − 8βTX + .2ε, if βTX ∈ (.75, 1).
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Table 1: Correlation coefficients between the true variable and estimated variable.

CCs model 1 model 2 model 3 model 4 model 5

re .9988 .9962 .9953 .9977* .9871*

rg .9995 .9991 .9939 .9985 .9920*

rp(6) .9476 .9832 .9318 .9542 .9772

rp(10) .9795 .9943 .9481 .9896 .9854

rp(15) .9926 .9968 .9613 .9962 .9921

rc(8) .9068 .9258* .9036* .7690** .9906

rc(10) .8922 .9702 .8906 .7596** .9974*

rc(12) .8989 .9952* .9246* .9903** .9982

rf(8) .9973 .9979 .9855 .9652 .9913

rf(10) .9996 .9989 .9755 .9922* .9994*

rf(12) .9960 .9983* .9928 .9991* .9980*

The numbers marked by * mean that initial vector of all

1’s is not good for this method to have a proper

solution, and it needs to be changed to random normal

or random uniform initial vectors; The numbers marked

by ** mean initial vector needs to be changed even

closer to the true vector.

21



Table 2: Bootstrap method with Legendre polynomial.

mq, mr model 1 model 2 model 3 model 4 model 5

d = 1 .0109,.0109 .0105,.0105 .0236,.0236 .0060,.0060 .0198,.0198

d = 2 .4270,.1663 .3111,.1325 .4543,.1839 .4925,.1906 .5494,.2065

mq(d) and mr(d) are the means of 1 − q and 1 − r for

B = 200 bootstrap samples using d-dimensional search,

respectively.

Table 3: Cross validation with Legendre polynomial.

CV(d) model 1 model 2 model 3 model 4 model 5

CV(0) 10.9591 .7803 .9971 .4333 .4186

CV(1) 1.0140 .2507 .3946 .2605 .0816

CV(2) 1.2923 .3005 .3944 .2921 .0977
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We now simulated 100 datasets for model 4 and model

5 to see how accuracy our method using Legendre system

will be together with the effects due to initials values. We

choose model 4 and model 5, because these models are much

”rough” comparing with other three models. The numbers

in Table 11 are the mean value of m2(β̂, β0) (as in Xia et al.

2002, section 2.1) for 100 datasets. The four initials are I1=

(1, ..., 1)T ; I2= (1, 1, 1, 1, 1, 0, ..., 0)T ; I3= (1, 1, 1, 0..., 0)T ;

I4= (1, 1, ..., 0)T .

Table 4: Mean squared distance with Legendre polynomial.

I1 I2 I3 I4

model 4 n = 200 .0196 .0108 .0109 .0102

model 4 n = 400 .0051 .0053 .0046 .0045

model 5 n = 200 .2653 .1257 .0431 .0358

model 5 n = 400 .1132 .0462 .0173 .0170
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Model 6: mean function model. This is a two-

dimensional model. Let p = 10, X1, ..., X10, ε are iid N(0, 1).

The model is Y = (βT
1 X)2 + (βT

2 X)2 + .5ε, where βT
1 =

(1, 0, ..., 0) and βT
2 = (0, 1, 0, ..., 0). Sample size n = 200.

The bootstrap method with B = 200 conclude d = 2 with

mq(1) = .3256, mq(2) =, 1028, mq(3) = .4229 and mr(1) =

.3256, mr(2) = .0435, mr(3) = .1116. This agrees with the

cross-validation method since CV (0) = 6.7907, CV (1) =

2.7216, CV (2) = 1.7813, and CV (3) = 2.0794. And the

correlation coefficients between the estimated variables and

the two true variables are .9686 and .9351, respectively.

Model 7: mean and variance function model. Let

p = 10, X1, ..., X10, ε are iid N(0, 1). The model is Y =

βT
1 X+0.25eβ

T

2 Xε, where βT
1 = (1, 1, 0, 0, 0, ..., 0) and βT

2 =

(0, 0, 1,−1, 0, ..., 0). Sample size n = 200. The cross-validation

method estimate that d = 1 for CMS, since CV (0) = 5.5823,

CV (1) = 3.3194, and CV (2) = 3.3958. And the cor-

relation coefficient between the estimated variable and the

true variable is .9738. Apply our method with K = 2,

our method identify two-dimensional for central second mo-

ment subspace. We finally identify CKMS has dimension

2 with the corresponding correlation coefficients being .9462

and .8491 respectively.
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Model 8: partial mean and variance function model.

This model is similar to the model studied by Carroll and Li

(1996). Let p = 10, X1, ..., X10, ε are iid N(0, 1). The model

is Y = (5+βTX+W+.5ε)2, where βT = (1, 1,−1,−1, 0, ..., 0)

and W ∼ Bin(1, .5). We simulated a dataset with sample

size n = 400. Based on our procedure, for each separated

group, and combined groups, we again identify 1 dimensional

structure with correlation coefficients ranging from .9638 to

.9944.

Model 9: Comparison with MAVE (Xia et al.

(2002). We adopt the example in Li (1991), which is also

used by Xia et al. (2002, model (4.2)) for MAVE method.

Let p = 10, X1, ..., X10, ε are iid N(0, 1). The model is

Y =
β

T

1 X

(.5+(β
T

2 X+1.5)2)
+ .5ε, where βT

1 = (1, 0, 0, ..., 0) and

βT
2 = (0, 1, 0, ..., 0). With sample size n = 200 and the same

distances m2(β̂1, B0) and m2(β̂2, B0) calculated in Xia et al.

(2002. section 2.1.1) for 100 replicated datasets, the mean of

them are .1225 and .1623, respectively. With sample size

n = 400, the corresponding statistics are .057 and .0731 re-

spectively. These results are comparable with MAVE method

as we expected.
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Real Data Sets.

Motorcycle data. We modified the motorcycle data that

was used by Härdle (1990), Eubank (1999) and Fan and Gij-

bels (1996) for nonparametric estimation methods. The orig-

inal motorcycle data contains two variables: the response

variable (Y ) of head acceleration (in g) of a PTMO (post

mortern test object) and the predictor variable (X1) of time

(in milliseconds) after a simulated impact with motorcycles.

In our study here we add 9 more independent variables

Xi ∼ N(0, 1) for i = 2, ..., 10. We simulated 10 datasets,

all of them have the similar results as the following: The

correlation coefficients range from .9201 to .9928. With a

typical data, the bootstrap method with B = 200 shows

that mq(1) = .0518, mq(2) = .5032, mr(1) = .0518, mr(2) =

.2041 and thus clearly d = 1. However, CV method shows

that CV (0) = 2317.5, CV (1) = 1281.3, CV (2) = 1277.9, CV (3) =

1348.7. Concluding d = 1 seems reasonable but not as firm

as bootstrap method. In such a case, graphical plot may

help. Figure 3a shows the response vs the estimated vari-

able recoving the original variable while Figure 3b shows the

response vs the second estimated variable which has no sig-

nificant structure.
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Ozone data. We take a data set from Breiman and

Friedman (1985), the data for studying the atmospheric ozone

concentration in the Los Angeles basin. The response (Y )

is the daily measurement of ozone concentration in Upland.

The eight predictors are Sandburg air force base temperature

(X1), inversion base height (X2), Dagget pressure gradient

(X3), visibility (X4), Vandenburg 500 millibar height (X5),

humidity (X6), inversion base temperature (X7) and wind

speed (X8). This data was also studied by Li (1992) for phd

method.

Table 11 below shows our numerical results with bootstrap

method and CV method. Clearly the mq criterion concludes

d = 2, mr criterion may conclude d = 3 (note that mr always

tends to have small increases comparing with mq) while CV

criterion conclude d = 2. Thus it is reasonable to infer d = 2.

Table 5: Cross validation with Legendre polynomial.

mq(1) mq(2) mq(3) mq(4) mq(5)

.0056 .0252 .3250 .5595 .5041

mr(1) mr(2) mr(3) mr(4) mr(5)

.0056 .0113 .0884 .1158 .0812

CV (0) CV (1) CV (2) CV (3) CV (4)

63.9861 17.4642 17.1435 17.3684 19.0169
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12 Further research

Other linear estimators: Many other CONS system can

be used in a similar fashion.

Possible improvements: for the methods used in this

paper, there are still many possible improvements. For in-

stance, in building a model by Fourier series, one can improve

the efficiency by shrinkage idea (Stein, 1956), and further

discussions by Efromovich and Pinsker (1982), Efromovich

(1985, 1996) and Nussbaum (1985).

Outliers: Outliers may affect our method since we used

moments. Particularly with CKMS for yk when big k is

used. Therefore robust estimators such as M-estimator may

be used.

Fast computation. Some algorithm can be improved

computationally via Fast Fourier Transform (Silverman, 1982)

and Härdle, 1987.

Theoretical interests. Consistency and asymptotic re-

sults for methods other than kernel and multiple dimensions.
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Figure 1: Response vs true variable for model 4: Continuous but not differentiable
mean function
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Figure 2: Response vs true variable for model 4: Discontinuous mean function
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