
1

Continuously monitoring 
a small incidence rate

Landon Sego
Bill Woodall

Marion Reynolds, Jr.

Department of Statistics
Virginia Polytechnic Institute and State University

Contact:  Landon Sego <sego@vt.edu>



2

Continuously monitoring a small 
incidence rate (proportion)

Examples:

• Monitoring the proportion of defective parts in 
a manufacturing assembly line, where each 
item is inspected.

• Monitoring the rate of a congenital 
malformation, where each infant in the region 
of monitoring is examined and diagnosed.
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Historical Development

• Prompted by the Thalidomide tragedy, the 
discussion of how best to monitor 
congenital birth defects began in the late 
1960’s. 

• Many surveillance methods have been 
proposed, most of which rely on the 
assumption that the number of incidences 
observed per unit time follows a Poisson 
distribution.
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Poisson Methods

• Several authors have discussed the idea of 
counting the number of incidences per unit 
time (X) and then plotting the standardized 
Poisson variate  

in a Shewhart chart with the traditional control 
limits at +/- 3.
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Poisson Methods

• Others have suggested using the standard 
CUSUM chart based on the Poisson 
distribution with reference value k, threshold 
h, and  X is the number of incidences 
observed per unit time.

• The chart signals when 
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Assumptions

1. Monitoring a specific congenital malformation 
in a specified region.

2. All infants are examined and data are recorded 
sequentially.  

3. We are interested in detecting increases in the 
baseline incidence rate.

4. The base-line (or in-control) probability of 
incidence is small:  
i.e.   p0 = 1/100,   1/1000,   1/10000
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Bernoulli-Geometric methods

Since we assume the data are observed 
sequentially, we can consider and will 
compare the following methods:

• Sets Method   Chen (1978) JASA

• CUSCORE Method Wolter (1987) Meth. Inform. Med.

• Sitter et. al. Method Sitter, et. al. (1990)  Am J Epidemiol

• Bernoulli CUSUM Reynolds & Stoumbos (1999) JQT
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Sets Method

• The Sets method was devised by Rina Chen 
in 1978 specifically for the surveillance of 
birth defects.

• A set is defined as the number of healthy 
babies that are born consecutively between 
those born with malformations. 
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Sets Method

• Set Size = number of normal births between 
malformation and 

• Alternatively, the size of the set can be 
determined by the amount of time elapsed 
between malformed cases if the birth rate is 
constant, in which case 

( ) { }K,2,1,0   ,~ ∈XpGeoX
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Sets Method

The Sets method signals an alarm 
if ns sets in a row have a size that 
is less than a threshold, t.
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Sets Method:  n = 3, t = 1500
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Sets method a special case

• The Sets method is a special case of a 
runs rule monitoring scheme given by 
Page in 1955:

• Signal an alarm if n consecutive points fall 
between the warning and action lines or if 
any point falls outside the action lines.
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Sets method a special case
Sets Method:  n = 3, t = 1500
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CUSCORE Method

• Same basic setup as the Sets method.
• Assign a score to each set:

• Accumulate the scores: and

• Signal when
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CUSCORE Method:  n = 4 , t = 1500
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Sitter et. al. method

• Same basic setup as Sets method.

• Raise a flag if nt sets in a row have size less 
than t.

• If the number of sets since the last flag is less 
than or equal to b, sound an alarm.

• After each flag, the number of sets in a row with 
size less than t resets to 0.
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Sitter Method:  n = 2, b = 4, t = 1500
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Bernoulli CUSUM
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Objectives of chart design

• We want the chart to run for a long time without 
signaling a false alarm if baseline incidence rate 
remains unchanged at p0 .  (Large in-control 
average run length, ARL0).

• Want the chart to signal quickly if the incidence 
rate increases to (γ > 1).  (Small out-of-
control average run length ARL1)

• If an alarm is signaled, further investigation is 
necessary.

01 γpp =
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Performance Criteria

• We measure the “speed” with which a chart 
signals with the Average Run Length (ARL)

• For the Sets, CUSCORE, and Sitter et. al. 
methods, the ARL could be the average number 
of malformations until signal.

• However, in order to make valid comparisons 
with the Bernoulli CUSUM, we will define the 
average run length as the average number of 
births until signal.



22

Performance Criteria

• One possible advantage for defining the ARL as 
the average number of births until signal is that 
is can be intuitively interpreted in terms of units 
of time if the birth rate is relatively constant. 

• However, if the ARL is based on the number of 
malformations until signal, interpreting the ARL 
in terms of units of time is not as straightforward 
since the frequency of the malformations 
depends on the incidence rate which we are 
monitoring.
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Choosing the parameters for the 
CUSUM

• The typical choice for the reference value, k, is 
based on Wald’s Sequential Probability Ratio 
Test (SPRT):
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To find k, we need an 
estimate of the baseline 
incidence rate p0 and we 
need to pick a shift γ that 
we would like detect.  
(Recall )01 γpp =



24

Choosing the parameters for the 
CUSUM

• To calculate the ARL of the CUSUM using Markov 
Chain theory, it is necessary to have a finite 
number of states.  We can accomplish this by 
adjusting our choice of γ by a small amount to γa
such that 

m
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1
=

where m is a positive integer.
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Choosing the parameters for the 
CUSUM

• For example, suppose we are interested in 
detecting a doubling in the incidence rate 
(γ = 2) when p0 = 0.001.  Then
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But if we let  γa = 2.000556, then
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Choosing the parameters for the 
CUSUM

• Pick, M, the target in-control average run 
length.

• After choosing γ and finding the 
corresponding values of γa and m, we 
search for the value of h that gives the 
smallest ARL0 ≥ M.  

• Incidentally,  the number of states in the 
Markov Chain is          .hm×
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Choosing the parameters for Sets, 
CUSORE, and Sitter et. al. Methods

1. Pick a shift size γ that we would like to 
detect. 

2. Find γa (in order to make equivalent 
comparisons to the CUSUM).

3. Choose the parameters n, t, (and b)  that 
minimize ARL1 subject to ARL0 ≥ M.
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Choosing the parameters for Sets, 
CUSORE, and Sitter et. al. Methods

• Since n, t, and b are integers, we find the 
optimal parameter choices using grid 
searches:

• For each n (and b), we adjust t until we 
find the smallest ARL0 ≥ M.  

• Then we identify the n (and b) that give the 
smallest ARL1.
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Comparisons in the literature

Sets Method

CUSCORE Method

Sitter Method

Poisson CUSUM

Modified Geometric CUSUM

Bernoulli CUSUM
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Results of comparisons reported in 
the literature

• Generally, all other methods perform better than 
the Sets method.

• Under certain conditions, the Sets method 
performs better than the Poisson CUSUM.

• With a few exceptions, most comparisons were 
based on the initial state ARL1 performance 
(where ARL is the number of malformations until 
signal).

• No one has compared the methods using the 
steady state ARL1 (where ARL is the number of 
births until signal).
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Steady State ARL

• Suppose you have been monitoring for a 
long period of time under baseline (in-
control) conditions, AND that you have not 
yet had an alarm.

• Then suppose at time T, the incidence rate 
shifts.

• The average run length since the shift at 
time T is the steady state ARL1
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Steady State ARL
The steady state ARL (based on the average 
number of births until signal) is better than the 
performance criteria used by authors in previous 
comparisons for these two reasons:

1. The shift in the incidence rate can occur 
anytime within a set.           Need ARL
based on Avg. Number of Births till signal.

2. The Sets, Cuscore, and Sitter et. al. 
methods have a built in “head-start”
feature if monitoring begins after the shift 
has taken place. Need steady state 
ARL.

⇒

⇒
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Steady State ARL:   Point 1
Sets Method:  n = 3, t = 1500
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Steady State ARL:   Point 2
Sets Method:  n = 3, t = 1500
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Steady State ARL:   Point 3

• Steady state ARL is a more realistic measure of 
performance than initial state ARL:

• Construction of the chart assumes we have a 
reliable estimate of p0.  If an epidemic is already 
underway when we begin monitoring, chances are 
our estimate of p0 is biased.

• The typical monitoring paradigm is that one begins 
monitoring during a non-epidemic period (in-
control) with the hope of quickly detecting an 
emerging epidemic if one occurs.
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Calculating the Steady-State ARL

• For the Sets, CUSCORE, and Sitter et. al. 
methods, exact formulas were derived for the 
steady-state average number of births until 
signal by expanding the Markov Chain results.

• For the CUSUM, exact steady-state ARL
calculations were made when the number of 
states was not prohibitively large (5,000 or less).   
Otherwise, simulation with 1 million replications 
was used.
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Comparisons

• Compared 23 different combinations of the 
baseline incidence rate, target in-control 
ARL, and shift size:

• Values of p0:   0.01, 0.005, 0.001, 0.0005, 0.0001
• Values of M:   range from 10,000 to 500,000
• Values of γdesign:    2, 4, 6
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Comparisons

• Charts were designed as previously 
described, choosing the parameters that 
minimized the initial state ARL1 subject to 
the initial state ARL0 ≥ M.

• In practice, one doesn’t know the actual 
value of the shift, hence we calculated (or 
simulated) steady state ARL for actual 
shifts of 1.25, 1.5, 1.75, …, 7.75, 8.
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Results
Of the 23×28 = 644 combinations of p0,  M, γdesign, and γ
for which we calculated the SS-ARL, the CUSUM 
outperformed all the other methods except at the 
following 13 combinations:

Method p0 M γdesign γ

Cuscore 0.001 50,000 6 1.25, 1.5, 1.75

Cuscore 0.0001 500,000 6 1.25, 1.5, 1.75

Sitter et.al. 0.01 25,000 6 1.25, 1.5, 1.75, 2.0

Sitter et. al. 0.005 50,000 6 1.25, 1.5, 1.75
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Results
In 21 of the 23 combinations of p0,  M, and γdesign, 
when γ = γdesign, the following inequality holds:
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Results

In the 2 cases where the inequalities above 
do not hold, we have     

SetsCuscoreSitterSets ARLSSARLSSARLSSARLSS .. and  .. ≥≥

These differences can be explained by the 
fact that the ARL0 of the apparently “better”
method was closer to the target in-control 
ARL,  M.
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Conclusions

• Sitter et. al, Sets, and CUSCORE methods 
are all prone to delay when a shift occurs 
because the set in which shift occurs may 
exceed the threshold t and therefore not 
move the chart toward signaling an alarm.

• Sitter et. al. method typically shows the 
worst steady state performance because it 
is prone to the longest delays in reacting 
to a shift.
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Conclusions

The CUSCORE method generally 
outperforms the Sets and Sitter et. al. 
methods because at any given point in time, 
the CUSCORE method is more likely to 
have accumulated more information about 
the process than the other two methods.
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Conclusions

• Of the four methods considered, the CUSUM is 
best at accumulating information about the 
process.

• The CUSUM performs uniformly better than the 
other three methods except when the chart is 
designed for a large shift (γdesign = 6) and the 
actual shift is small ( γ ≤ 2 ).

• The SS-ARL performance of the CUSUM is 
always best when the actual shift matches the 
shift for which the chart was designed (γdesign = γ).
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Recommendations

• For monitoring a process where Bernoulli 
observations can be observed sequentially 
(such as surveillance of birth defects), use 
the Bernoulli CUSUM.

• The Geometric CUSUM could also be 
used, since it is equivalent to the Bernoulli 
CUSUM (see Reynolds & Stoumbos
(1999) JQT).
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