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What is SELC ?

SELC = Sequential Elimination of Level Combinations

SELC is a novel optimization technique which borrows ideasifstatistics.
Motivated by Genetic Algorithms (GA).

A novel blending of Design of Experiment (DOE) ideas and GAs.
— Forbidden Array.
— Weighted Mutation (main power of SELC - from DOE.)

This global optimization technique outperforms classigAl



Motivating Examples

ORMM?

Input ’ BLACK BOX > y=f(x)
SELC
Max

Computer Experiment



Example from Pharmaceutical
Industry

10 x 10 x 10 x 10 = 104 possibilities

l SELC

Max




Sequential Elimination of Level Combinations
(SELC)

A Hypothetical Example

y = 40+ 3A+ 16B — 4B? —5C + 6D — D°+ 2AB—3BD +¢
e 3 factors each at 3 levels.

e linear-quadratic system

level linear quadratic

1 —1 1
—

2 0 —2

3 1 1

e Aim is to find a setting for whicly has maximum value.



Start with an OA( 9, 3%

A B C D y
1 1 1 1| 1007
1 2 2 3| 5362
1 3 3 2| 4384
2 1 2 2| 13.40
2 2 3 1| 46.99
2 3 1 3| 55.10
3 1 3 3| 570
3 2 1 2| 4365
3 3 2 1| 4701




Construct Forbidden Array

Forbidden Array is one of the key features of SELC algorithm.

First we choose the “worst” combination.

A B C DJ| vy
3 1 3 3| 570

Forbidden array consists of runs with same level combinatas that of the
“worst” one at any two positions:

A B C D
3 1 * *
3 * 3 *
3 * * 3
* 1 3 *
* 1 * 3
* * 3 3

where * is the wildcard which stands for any admissible value



Order of Forbidden Array

e The number of level combinations that are prohibited frotmssguent
experiments defines the forbidden array’der (k).

— The lower the order, the higher the forbiddance.



Search for new runs

e After constructing the forbidden array, SELC starts seagfor better level
settings.

e The search procedure is motivated byGenetic Algorithms.



Search for new runs : Reproduction

The runs are looked upon as chromosomes of GA.
Unlike GA, binary representation of the chromosomes aranaetled.

Pick up the best two runs which are denotedPpandps.

A B C D vy

P 2 3 1 3 5510
P> 1 2 2 3 53.62

They will produce two offsprings calle@,; andO..



Pictorially

|
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Figure 1 : Crossover

Figure 2 . Mutation



Step 1— Crossover

Randomly select a location between 1 and 4 (say, 3) and dearesat this
position.

P, : 2 3|1 3 Crossover O, : 2 3
o 512 3 — & "1 3

N
ww



Step 2— Weighted Mutation

Weighted Mutation is the driving force of SELC algorithm.

Design of Experiment ideas are used here to enhance the selangower
of Genetic Algorithms.

Randomly select a factor (gene) 105 andO, and change the level of that
factor to any (not necessarily distinct) admissible level.

If factor F has a significant main effect, then
p Oy(F=1).
If factorsF; andF have a large interaction, then
i, OY(F1L=11,F2 =13).

Otherwise the value is changed to any admissible levels.



ldentification of important factors

Weighted mutation is done only for those few factors which a@ important
(Effect sparsity principle).

A Bayesian variable selecti®trategy is employed in order to identify the
significant effects.

Factor Posterior

A 0.13 Factor Posterior
B 1.00 AB 0.07

C 0.19 AC 0.03

D 0.15 AD 0.02
A2 0.03 BC 0.06
B2 0.99 BD 0.05
C? 0.02 CD 0.03
D2 0.15




ldentification of important factors

If FactorB is randomly selected for mutation, then we calculate
p1 = 0.09, po = 0.45 and p3 = 0.46.
For O4, location 1 is chosen and the level is changed from 2 to 1.

For O, location 2 was selected and the level was changed from 2 to 3.

O, : 2 3 1 2 Muaton O, : 1 3
d» 1 2 2 %2 — & 1 3

N
NN



Eligibility
An offspring is calleceligible if it is not prohibited by the forbidden array.

Here both of the offsprings are eligible and are “new” leva@inbinations.

A B C D y

10.07
53.62
43.84
13.40
46.99
55.10

5.70
43.65
47.01

54.82
49.67
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Repeat the procedure

A B C D y
1 1 2 1/|1007
1 2 1 2/|5362
1 3 3 3| 4384
2 1 1 111340
2 2 3 3| 46.99
2 3 2 2|5510
3 1 3 1| 570
3 2 2 14365
3 2 3 2|4701
1 3 1 25482
1 3 2 2| 4967
2 3 1 25895
1 2 2 34841
2 3 2 2|5510
2 2 2 14151
3 3 1 2]6326




Stopping Rules

The stopping rule is subjective.

e As the runs are added one by one, the experimenter can dacale,

sequential manner, whether significant progress has bede amal can stop
after near optimal solution is attained.

e Sometimes, there is a target value and once that is attaim@dearch can
be stopped.

e Most frequently, the number of experiments is limited by tesources at
hands.



The SELC Algorithm

1. Initialize the design. Find an appropriatehogonal array. Conduct the
experiment.

2. Construct théorbidden array .

3. Generate newffspring

— Selectoffspring for reproduction with probability proportiont their
“fitness.”

— Crossovetthe offspring.
— Mutatethe positions usingveighted mutation.
4. Check thenew offspring’s eligibility . If the offspring is eligible, conduct

the experiment and go to step 2. If the offspring is ineligjlbthen repeat
step 3.



A Justification of Crossover and Weighted Mutation

Consider the problem of maximizifg(x), X = (Xq,...,Xp), overg <X < b;.

Instead of solving the@-dimensional maximization problem
max{K(x):agxigbi,izl,...,p}, (1)
the following p one-dimensional maximization problems are considered,
max{Ki(xi):agxigbi,i:l,...,p}, (2)
whereK;(x;) is theith marginal function oK(x),

Ki (%)) :/K(X)Ddxj
J A

and the integral is taken over the intervgls bj|, j #1.



A Justification of Crossover and Weighted Mutation
Let X' be a solution to théh problem in (2). The combinatiox = (x3,...,Xp)
may be proposed as an approximate solution to (1).

A sufficient condition forx* to be a solution of (1) is that

K(x) can be represented as

K(x) = LIJ(Kl(Xl),...,Kp(Xp)> (3)

and
) IS nondecreasing in ead};.

A special case of (3), which is of particular interest inistats, is

P PP

K(x) = ZGiKi(Xi)+_Z_Zl?\ini(Xi)Kj(Xj)-
£ =

SELC performs well in these situations.



|dentification of Model : A Bayesian Approach
Use Bayesian model selection to identify most likely mod€lsipman,
Hamada and Wu, 1997).

Require prior distributions for the parameters in the model

Approach uses standard prior distributions for regresgaameters and
variance.

Key idea : inclusion of a latent variabl&)(which identifies whether or not
an effect is in the model.



Linear Model
For the linear regression with normal errors,
Y = XiBi +¢,
where
- Y Is the vector olN responses,
- X Is theith model matrix of regressors,

- [ is the vector of factorial effects ( linear and quadraticmeffects and
linear-by-linear interaction effects) for thign model,

- ¢is the iidN(0, %) random errors



Prior for Models

Here the prior distribution on the model space is constdugia simplifying
assumptions, such as independence of the activity of mentef(Box and
Meyer 1986, 1993), and independence of the activity of higheer terms
conditional on lower order terms (Chipman 1996, and ChipriEamada, and
Wu 1997).

Let’s illustrate this with an example. Lét= (da, 0g, Oc, daB, Oac, OBC)

P(3) = P(da,ds,dc,daB,dAc,dsc)
= P(da,08,0c)P(0aB, Oac, OBc|OA, OB, OC)
= P(da)P(d8)P(dc)P(das|0a, 08, Oc)P(dac|0a, 08, Oc)P(dsc|da, 08, Oc)
= P(5a)P(38)P(3c)P(as|5a, 38)P(3ac| 5a, dc)P(3ec| 38, dc)



Basic assumptions for Model selection

Al. Effect SparsityThe number of important effects is relatively small.

A2. Effect Hierarchy Lower order effects are more likely to be important than
higher order effect and effects of the same order are equragigrtant.

A3. Effect InheritanceAn interaction is more likely to be important if one or
more of its parent factors are also important.



Prior for Distribution of Latent Variable 0o

Main Effects

Quadratic Effects

0.1p if =0,

P(Op2 = 1|0a) =
(02 = 110n) {p i Sa—1

2fl's

( 01p if Sp+dg=0,
P(6AB — 1|5A,6B) = 4 O.5p if 6A—|—6B =1,
P If Oa+0g=2

The posterior probabilities ¢¥s are computed using Gibbs sampler.



Example 1 : Shekel 4 function (SQRIN)

X17 Zl
ZJ 1(X +C|

The region of interest is & x; < 10 and only integer values are considered.

Table 2 : Coefficients for Shekel’s functiom& 7)

i a”-,jzl,...,4 Ci

40 40 4.0 4.0 0.1
1.0 1.0 10 1.0 0.2
80 80 8.0 8.0 0.2
6.0 6.0 6.0 6.0 04
30 70 3.0 7.0 04
20 9.0 20 9.0 0.6
50 50 3.0 3.0 0.3

~NOoO o b wWwDN B




Plot of Shekel 4 function

5000 10000

15000



Performance of SELC : Shekel 4 function

e Four factors each at eleven levels (i.e. the 11 integers).
e Starting design is an orthogonal array - 4 columns from O&(24%°).

e Forbidden arrays of order 3 are considered as order 1 or ZviEstno
restrictive.



Table 3 : % of success in identifying global maximum for diffiet methods
based on 1000 simulations

Run size = 1000

Max 2nd 3rd 4th 5th| Total

best best best  best
Random Search 6.3 11.5 57 10.1 4.2 37.8
Random Followup| 4.7 9.3 3.7 9.4 25| 29.6

Genetic Algo 11.8 7.0 10.4 15.1 4.5 484
SELC 13.1 8.3 11.5 17.3 59 56.1
Run size =700

Max 2nd 3rd 4th 5th| Total

best  best best  best
Random Search 4.2 9.0 4.0 9.2 4.1 305
Random Followup| 3.0 6.8 3.0 5.1 2.4 20.3
Genetic Algo 5.8 5.6 6.0 9.2 3.3] 29.9
SELC 6.3 5.5 6.9 115 4.0] 34.2
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Example 2 (Levy and Montalvo)

ot (852)) 5 (52 oo o5

X (X”; 2>2 {1+sin2(2n(xn— 1)) },

<
/N
X
=
X
N—"
|

e Heren=4.
e Only integer values af;’s (0 < x; < 10) are considered.

e This again corresponds to an experiment with 4 factors eath vels.

)+



Plot of Levy’s function
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Performance of SELC

Table 4 : % of success in identifying global maximum for diffiet methods
based on 1000 simulations

121-Run Design 242-Run Design
Total Run Size 300 500 1000| 300 500 1000
Random Search 5.8 9.3 18.4| 5.0 9.3 18.4
Random Followup 2.9 7.7 155 29 1.7 15.5
Genetic Algo 16.8 43.1 80.7| 29 333 81.8
SELC 28.4  66.2 944 6.6 45.9 93.5
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Application
SELC method was applied to a combinatorial chemistry probdnere a
combination of reagents was desired to maximize targebeffi).

Target efficacy is measured by a compound’s percent inbrbodf activity
for a specific biological screen.

For this screen, a percent inhibition value of 50 or greataniindicator of a
promising compound. And, percent inhibition values of 9%)@ater have a
high probability of exhibiting activity in confirmation seening.

Reagents can be added to 3 locatiolksH, andC) :

2x10x14= 280

possible chemical entities.

Due to resource limitations, only 25 compounds could betecka



Pharmaceutical Example (Cont.)

e Forbidden Array:
— Forbidden array of order 2 was used.

— Based on prior scientific knowledge, some combinations ajeats for
this experiment were known to yield unfavorable perceniarion
values. These combinations of reagents were placed intothielden

array prior to the experiment.

e Starting Design:
— 2 x 2 x 3 orthogonal array.
— Want to have a small starting design. As resources allow\e baly 25
runs, a 12 run starting design seems appropriate.

— 2 x 2 x 3 design is taken instead of3 x 2 design as there are more
levels forC (as well as more “effective” levels).



Initial Design

e Next two Tables present the relative frequency of occuearitche

Individual levels of factors B and C, respectively in thelfioiden array.

FactorB
Level 1 2 3 4 5 6 7 8 9 10
Relative Freq. (in%)] 3 3 26 4 29 5 10 1 5 14
FactorC
Level 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Rel. Freq.| 8 7 7 4 5 4 4 3 8 5 16 11 8 8




Starting Experiment

24
-23

34
12
63
21

-16

49

#| A B C

10
11
12




Weighted Mutation

e ForB andC, not all levels are explored in the initial experiment. Sthiy
turn out to be significant then its level is changed to any adimhie level
with some probability, and with higher probability to theoprising levels.

e Negative values of’'s are taken to be zero in calculating the mutation
probabillities.

e In this caseB turns out to be significant after 13th run.



Weighted Mutation (Cont.)

Let p; be the probability with which the existing level is changedevel j.

24434+ 63+2+5+49+83+ 56+ 14483 1
_ A5+ — x0.2
Ps 1016 x 0 5-|—1O><O 5
0+124214+940+5 1
Pg = 1016 ><O.75+1—O><O.25
1 .
Ppj = 1—O><0.25 forall j # 8,9

Note the the sum of the positive valuesyddfter first 13 runs is 1016.

There are 10 levels @& which accounts for the /L0 in the above
expression.

The weights 075 and 025 are taken arbitrarily.



Follow-up Runs

The results from the subsequent runs are given below.

#| A B C y
13| 2 8 10| 83 *
14 | 2 3 4| 65 *
15| 2 1 4| 107 ~*
16 | 2 2 10| 49
17 | 2 8 2| 56 *
18 | 1 6 10| 19
19 | 2 2 4| 60 *
20 2 10 10| 39
21| 1 8 10| 14
22 | 2 6 8| 90 *
23 | 2 6 10| 64 *
24 | 2 1 1 -3
25| 2 2 5| 63 *




Confirmatory Tests

e Clearly, the SELC method (with its slight modifications fhistapplication)
identified a rich set of compounds.

e In fact, all compounds run in the experiment were analyzefmilow-up
experiment where their l§g values were determined. Compounds that were
judged to be acceptable by the chemists are indicated wisistmisk.



Summary and Conclusions

Good for relatively large space.

Start with anOrthogonal Design This helps identifying the important
effects.

Bayesian variable selectiondentifies the important factors.
Follow-up runs are very flexible arahta-driven.
Weighted Mutation uses sequential learning.

A novel blending of Design of Experiment ideas and GenetmgoAithms.
SELC outperforms GA in many cases.

Useful for many real-life examples.



Thank you





