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Robust Parameter Design (RPD)

• Quality improvement via variation reduction (Taguchi, 1986)

• Two types of factors: control and noise factors

• Key idea:

Explore the effects of control factors, noise factors, and their interactions, and

choose control settings to simultaneously optimize system mean response

and reduce variation (Wu and Hamada, 2000)

• Both control and noise factors are systemetically varied during

experimentation.
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Experiment and Modeling Strategies

• Cross array or inner-outer product array orginally proposed by Taguchi:

a cross product of a design (array) for control factors and a design (array) for

noise factors

At each fixed control setting, response mean and dispersion can be

calculated.

Use location-dispersion modeling to identify best settings of control factors

• Single array or combined array proposed by Lucas, Welch et al.:

one single design (array) to accomodate both types of factors.

Use response modeling to model response as a function of control effects,

noise effects and their interactions

Derive mean response model and variance transmitted model for

optimization.
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Optimal Experimental Plans

• Optimal experimental plans for robust parameter design: still an unsettled

open problem.

• Compound orthogonal array as a generalization of cross array (Rosenbaum,

1994, 1996 and 1998)

not requiring rigid crossing structure

• Optimal single array

– Opitmality criterion based on modified wordlength patterns (Bingham and

Sitter, 2003)

– General framework based on new effects ordering principle and weighted

combination of wordlength patterns (Zhu and Wu, 2003)

not sensitive or too complex

• Simple and direct approaches are in order to construct optimal experimental

plans for robust parameter designs.
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2l−p Designs

• Regular two-level fractional factorial designs generated by m independent

defining relations (words)

• Defining contrast subgroup G.

• Wordlength pattern:

W = (W1, W2, . . . , Wl)

Wi: the number of defining words of length i in G.

• Resolution is the smallest i such that Wi > 0, and

strength = resolution − 1

• Minimum aberration (MA) design sequentially minimizes Wi and considered

to be optimal.

• An effect is clear if it is not aliased with main and two factor interactions.
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2(l1+l2)−p Designs with Two Groups of Factors

• l1 factors belong to Group I and l2 factors belong to Group II.

• p independent defining words and defining contrast subgroup G.

• Wordtype Pattern matrix (Ai.j)0≤i≤l1;0≤j≤l2 where

Ai.j : number of words in G involving i Group I factos and j Group II factors

• Ai.j can be arranged into a sequence

Wt = (A3.0, A2.1, A1.2, A0.3, A4.0, . . . )

• For robust parameter design, control factors form Group I (lc) and noise

factors form Group II (ln).

• Both cross array and single array can be viewed as 2(lc+ln)−p designs
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Roadmap for constructing optimal plans for RPD

• For fixed experiment size N = 2k, define

S(2k) = {(i, j) : dlog2(i + 1)e + dlog2(j + 1)e ≤ k}.

• for the cases where cross arrays exist, that is, (lc, ln) ∈ S(2k), propose and

use optimality criterion to select optimal compound orthogoal array

• for the cases where cross arrays do not exist, that is, (lc, ln) /∈ S(2k),

propose and use criterion to select optimal economical single array

• For the former cases, select optimal general single arrays according to

various criteria and compare them with optimal compound orthogonal arrays

to decide which to use.
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Strong Compound Orthogonal Array (SCOA)

• A 2(lc+ln)−p is a strong compound orthogonal array if Ai.1 = Ai.2 = 0 for

1 ≤ i ≤ lc.

Example: four control factos (A, B, C , D) and three noise factors (a, b, c):

d : I = ABCD = ABabc = CDabc

At each fixed setting of A, B, C and D, the settings of a, b and c form a

design defined by either by abc = 1 or abc = −1 with strength 2.

• Noise arrays in a strong compound orthogonal array have strength at least 2.
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Order of Aliaising Severity and Wc-Aberration

• Ai1,j1 is more severe than Ai2,j2 , denoted by Ai1,j1 / Ai2,j2 , if

(i) i1 + j1 < i2 + j2; or

(ii) | i1 − j1 |<| i2 − j2 | and i1 + j1 = i2 + j2; or

(iii) i1 > i2 and |i1 − j1| = |i2 − j2| and i1 + j1 = i2 + j2.

• Wc-sequence

Wc = (A3.0, A0.3, A1.3, A4.0, A0.4, A2.3, A1.4, . . . )

• d1 is said to have less Wc-aberration than d2 if Wc(d1) and Wc(d2) first

differ at Ai0,j0 and Ai0,j0(d1) < Ai0,j0(d2).

• Strong compound orthogonal arrays with minimum Wc-aberration are optimal
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Tables of Optimal SCOAs with ln ≥ 3

Design generator strength clear effects

16-run:

. . . . . . . . . . . .

(3, 3)◦ ABC Aabc (2, 2, 2) (0, 3, 0, 6, 0)

. . . . . . . . . . . .

32-run:

. . . . . . . . . . . .

(2, 5)? abcd ABabe (2, 2, 3) (2, 5, 1, 10, 4)

(3, 4)? ABC Aabcd (2, 3, 2) (0, 4, 0, 12, 6)

(4, 3)? ABCD ABabc (3, 2, 3) (4, 3, 0, 12, 3)

. . . . . . . . . . . .

64-run:

. . . . . . . . . . . .

(3, 6)? abce ACabd Bacdf (3, 2, 3) (3, 6, 3, 18, 9)

(4, 5)? ABCD ABabd ACace (3, 2, 3) (4, 5, 0, 20, 10)

(5, 4)? ABD ACE BCabcd (2, 3, 2) (0, 4, 0, 20, 6)

. . . . . . . . . . . .
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Economical Single Arrays (ESA)

• A single array 2(lc+ln)−p with (lc, ln) /∈ S(N) is called an Economical

Single Arrays:

– Experiment is not big enough to allow crossing structure

– Only response modeling can be used to analyze data

– Must prioritize crucial effects such as control main effects, control-by-noise

interactions.

– Have to discriminate against unimportant effects such as noise effects

• Different trade-off schemes lead to different criteria
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Ws Sequence and Ws-Aberration

• Recall that Wc sequence does not contain Ai.1 and Ai.2.

• Properly including Ai.1 and Ai.2 in Wc leads to

Ws = (A2.1,A1.2, A3.0, A0.3, A2.2,A3.1, A1.3, A4.0, A0.4,A3.2, A2.3, . . . ).

• Ws partially perserves the hierarchical ordering principle

• Ws-aberration and minimum Ws-aberration criterion can be proposed.

• Due to limited capacity in ESA, Ws is too restrictive.
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Split Wordtype Pattern and (Wsm, Wsn)-Aberration

• Split Ws into two separate sequences

Wsm = (A2.1, A1.2, A3.0, A2.2, A3.1, A1.3, A4.0, A3.2, A2.3, . . . ),

Wsn = (A0.3, A0.4, A0.5, A0.6. . . . ).

• Note that Wsn contains patterns involving noise factors only.

• Select ESAs frist according to Wsm, then further use Wsn, or in short,

according to (Wsm, Wsn)-aberration

• Advantage: the selected ESAs possess clear combinatorial structure

• Disadvantage: the trade-off between important and unimportant effects may

be too extreme
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Shifted Wordtype Pattern and Wss-Aberration

• Start with Ws, shift the patterns involving only noise factors rightward to

proper positions

Wss = (A2.1, A1.2, . . . , A4.0, A3.2,A0.3, A2.3, A4.1, . . . , A4.2,A0.4 . . . )

• Wss-aberration and minimum Wss-aberration can be defined.

• Other possible milder trade-off schemes could also be used.

• Often lead to the same optimal ESA as the split wordtype patterns.
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Tables of Optimal ESAs with minimum (Wsm, Wsn)-Aberration

Design generator clear 2fi

16-run:

(2, 4) abc ABad (2, 1, 0, 4, 2)

(2, 5) abd ace ABbc (2, 0, 0, 2, 0)

(2, 6) abd ace bcf ABabc (2, 0, 0, 0, 0)

32-run:

. . . . . . . . .

(4, 6) abd ace bcf ACabc ABDa (4, 0, 0, 8, 0)

(5, 5) abd ace ACbc BDbc ABEa (5, 0, 0, 4, 0)

(6, 4) abc ABDa ACEa BCFa ABCbd (6, 1, 0, 6, 2)

(2, 9) abe acf bcg abch adi ABbd (2, 0, 0, 10, 0)

. . . . . . . . .

64-run:

(4, 8) abe acf bcg Aabch ACad BDabcd (4, 2, 5, 20, 4)

(8, 4) Cabc Dabd AEacd BFacd ABGab ABHbcd (8, 4, 12, 24, 0)

(4, 9) abe acf bcg adh Aabci ACbd ABDacd (4, 1, 5, 20, 2)

(5, 8) abd ace bcf abcg ABDa ACEb BCch (5, 1, 2, 26, 5)

. . . . . . . . .
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General Single Arrays

• When SCOA arrays exists, general single arrays can also be considered.

• It is not conclusive which criterion we should use for selecting optimal

genenal single array

• Use all Ws-, (Wsm, Wsn)- and Wss-aberrations and compare the optimal

designs.

• Other considerations may be used to determine which optimal design to use

in practice.
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Table of General Optimal Single Arrays

Design Defining Generators Ws (Wsm, Wsn) Wss COA MA

16-Run:

. . . . . . . . . . . . . . . . . . . . .

(3, 3) ABCa ABbc
√ √

(3, 3) ABCa abc
√ √

. . . . . . . . . . . . . . . . . . . . .

32-Run:

. . . . . . . . . . . . . . . . . . . . .

(3, 4) abcd ABCab
√ √

(4, 3) ABCD ABabc
√ √ √

(4, 3) abc ABCDa
√ √

(5, 2) ABCD ABEab
√ √ √ √

. . . . . . . . . . . . . . . . . . . . .

64-run:

(3, 5) ABabd Cabce
√ √ √

(4, 4) Aabcd ABCDa
√ √

. . . . . . . . . . . . . . . . . . . . .
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Conclusion: An Example

• Four control factors (A, B, C , D) and three noise factors (a, b, c) in a RPD

experiment

• If can afford to conduct 64 runs, the optimal SCOA is genereated by

d1 : I = ABCD = ABabd = ACace;

[ The optimal general single array is generated by

d2 : I = abce = ACabd = ABCDbc

if crossing structure is not crucial, d2 is more attractive.

• If can afford to conduct 32 runs only, then

32-run SCOA does not exists
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optimal economical single array is generated by

d3 : I = ABac = ABbd = Aabd = BCDab

• The designs are obtained from the complete tables.
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