Optimal Compound Orthogonal Arrays and Single Arrays for Robust Parameter Design Experiments

Michael Y. Zhu and Peng Zeng
Purdue University
May 19, 2005

Outline

- Introduction
- Optimal Strong Compound Orthogonal Array
- Optimal Economical Single Array
- Compound Array versus Single Array
- Conclusion

Robust Parameter Design (RPD)

- Quality improvement via variation reduction (Taguchi, 1986)
- Two types of factors: control and noise factors
- Key idea:

Explore the effects of control factors, noise factors, and their interactions, and choose control settings to simultaneously optimize system mean response and reduce variation (Wu and Hamada, 2000)

- Both control and noise factors are systemetically varied during experimentation.

Experiment and Modeling Strategies

- Cross array or inner-outer product array orginally proposed by Taguchi: a cross product of a design (array) for control factors and a design (array) for noise factors

At each fixed control setting, response mean and dispersion can be calculated.

Use location-dispersion modeling to identify best settings of control factors

- Single array or combined array proposed by Lucas, Welch et al.: one single design (array) to accomodate both types of factors.

Use response modeling to model response as a function of control effects, noise effects and their interactions

Derive mean response model and variance transmitted model for optimization.

Optimal Experimental Plans

- Optimal experimental plans for robust parameter design: still an unsettled open problem.
- Compound orthogonal array as a generalization of cross array (Rosenbaum, 1994, 1996 and 1998)
not requiring rigid crossing structure
- Optimal single array
- Opitmality criterion based on modified wordlength patterns (Bingham and Sitter, 2003)
- General framework based on new effects ordering principle and weighted combination of wordlength patterns (Zhu and Wu, 2003) not sensitive or too complex
- Simple and direct approaches are in order to construct optimal experimental plans for robust parameter designs.
2^{l-p} Designs
- Regular two-level fractional factorial designs generated by m independent defining relations (words)
- Defining contrast subgroup \mathcal{G}.
- Wordlength pattern:

$$
W=\left(W_{1}, W_{2}, \ldots, W_{l}\right)
$$

W_{i} : the number of defining words of length i in \mathcal{G}.

- Resolution is the smallest i such that $W_{i}>0$, and

$$
\text { strength }=\text { resolution }-1
$$

- Minimum aberration (MA) design sequentially minimizes W_{i} and considered to be optimal.
- An effect is clear if it is not aliased with main and two factor interactions.
$2^{\left(l_{1}+l_{2}\right)-p}$ Designs with Two Groups of Factors
- l_{1} factors belong to Group I and l_{2} factors belong to Group II.
- p independent defining words and defining contrast subgroup \mathcal{G}.
- Wordtype Pattern matrix $\left(A_{i . j}\right)_{0 \leq i \leq l_{1} ; 0 \leq j \leq l_{2}}$ where
$A_{i . j}$: number of words in \mathcal{G} involving i Group I factos and j Group II factors
- $A_{i . j}$ can be arranged into a sequence

$$
W_{t}=\left(A_{3.0}, A_{2.1}, A_{1.2}, A_{0.3}, A_{4.0}, \ldots\right)
$$

- For robust parameter design, control factors form Group I $\left(l_{c}\right)$ and noise factors form Group II (l_{n}).
- Both cross array and single array can be viewed as $2^{\left(l_{c}+l_{n}\right)-p}$ designs

Roadmap for constructing optimal plans for RPD

- For fixed experiment size $N=2^{k}$, define

$$
\mathcal{S}\left(2^{k}\right)=\left\{(i, j):\left\lceil\log _{2}(i+1)\right\rceil+\left\lceil\log _{2}(j+1)\right\rceil \leq k\right\}
$$

- for the cases where cross arrays exist, that is, $\left(l_{c}, l_{n}\right) \in \mathcal{S}\left(2^{k}\right)$, propose and use optimality criterion to select optimal compound orthogoal array
- for the cases where cross arrays do not exist, that is, $\left(l_{c}, l_{n}\right) \notin \mathcal{S}\left(2^{k}\right)$, propose and use criterion to select optimal economical single array
- For the former cases, select optimal general single arrays according to various criteria and compare them with optimal compound orthogonal arrays to decide which to use.

Strong Compound Orthogonal Array (SCOA)

- A $2^{\left(l_{c}+l_{n}\right)-p}$ is a strong compound orthogonal array if $A_{i .1}=A_{i .2}=0$ for $1 \leq i \leq l_{c}$.

Example: four control factos (A, B, C, D) and three noise factors (a, b, c) :

$$
d: I=A B C D=A B a b c=C D a b c
$$

At each fixed setting of A, B, C and D, the settings of a, b and c form a design defined by either by $a b c=1$ or $a b c=-1$ with strength 2 .

- Noise arrays in a strong compound orthogonal array have strength at least 2.

Order of Aliaising Severity and W_{c}-Aberration

- $A_{i_{1}, j_{1}}$ is more severe than $A_{i_{2}, j_{2}}$, denoted by $A_{i_{1}, j_{1}} \triangleleft A_{i_{2}, j_{2}}$, if
(i) $i_{1}+j_{1}<i_{2}+j_{2}$; or
(ii) $\left|i_{1}-j_{1}\right|<\left|i_{2}-j_{2}\right|$ and $i_{1}+j_{1}=i_{2}+j_{2}$; or
(iii) $i_{1}>i_{2}$ and $\left|i_{1}-j_{1}\right|=\left|i_{2}-j_{2}\right|$ and $i_{1}+j_{1}=i_{2}+j_{2}$.
- W_{c}-sequence

$$
W_{c}=\left(A_{3.0}, A_{0.3}, A_{1.3}, A_{4.0}, A_{0.4}, A_{2.3}, A_{1.4}, \ldots\right)
$$

- d_{1} is said to have less W_{c}-aberration than d_{2} if $W_{c}\left(d_{1}\right)$ and $W_{c}\left(d_{2}\right)$ first differ at $A_{i_{0}, j_{0}}$ and $A_{i_{0}, j_{0}}\left(d_{1}\right)<A_{i_{0}, j_{0}}\left(d_{2}\right)$.
- Strong compound orthogonal arrays with minimum W_{c}-aberration are optimal

Tables of Optimal SCOAs with $l_{n} \geq 3$

Design	generator	strength	clear effects
16-run:			
$(3,3)^{\circ}$	$A B C A a b c$	$(2,2,2)$	$(0,3,0,6,0)$
32-run:	\cdots	. \cdot	
$(2,5)^{\star}$	abcd ABabe	$(2,2,3)$	$(2,5,1,10,4)$
$(3,4)^{\star}$	$A B C$ Aabcd	$(2,3,2)$	(0, 4, 0, 12, 6)
$(4,3)^{\star}$	$A B C D A B a b c$	$(3,2,3)$	$(4,3,0,12,3)$
64-run:		. .	
$(3,6)^{\star}$	abce ACabd Bacdf	\cdots $(3,2,3)$	\cdots $(3,6,3,18,9)$
$(4,5)^{\star}$	$A B C D A B a b d$ ACace	$(3,2,3)$	$(4,5,0,20,10)$
$(5,4)^{\star}$	$A B D A C E B C a b c d$	$(2,3,2)$	(0, 4, 0, 20, 6)
崖	.	-	\cdots

Economical Single Arrays (ESA)

- A single array $2^{\left(l_{c}+l_{n}\right)-p}$ with $\left(l_{c}, l_{n}\right) \notin \mathcal{S}(N)$ is called an Economical Single Arrays:
- Experiment is not big enough to allow crossing structure
- Only response modeling can be used to analyze data
- Must prioritize crucial effects such as control main effects, control-by-noise interactions.
- Have to discriminate against unimportant effects such as noise effects
- Different trade-off schemes lead to different criteria

W_{s} Sequence and W_{s}-Aberration

- Recall that W_{c} sequence does not contain $A_{i .1}$ and $A_{i .2}$.
- Properly including $A_{i .1}$ and $A_{i .2}$ in W_{c} leads to

$$
W_{s}=\left(\mathbf{A}_{\mathbf{2 . 1}}, \mathbf{A}_{\mathbf{1 . 2}}, A_{3.0}, A_{0.3}, A_{2.2}, \mathbf{A}_{\mathbf{3 . 1}}, A_{1.3}, A_{4.0}, A_{0.4}, \mathbf{A}_{\mathbf{3 . 2}}, A_{2.3}, \ldots\right)
$$

- W_{s} partially perserves the hierarchical ordering principle
- W_{s}-aberration and minimum W_{s}-aberration criterion can be proposed.
- Due to limited capacity in ESA, W_{s} is too restrictive.

Split Wordtype Pattern and $\left(W_{s m}, W_{s n}\right)$-Aberration

- Split W_{s} into two separate sequences

$$
\begin{gathered}
W_{s m}=\left(A_{2.1}, A_{1.2}, A_{3.0}, A_{2.2}, A_{3.1}, A_{1.3}, A_{4.0}, A_{3.2}, A_{2.3}, \ldots\right) \\
W_{s n}=\left(A_{0.3}, A_{0.4}, A_{0.5}, A_{0.6} \ldots\right)
\end{gathered}
$$

- Note that $W_{s n}$ contains patterns involving noise factors only.
- Select ESAs frist according to $W_{s m}$, then further use $W_{s n}$, or in short, according to $\left(W_{s m}, W_{s n}\right)$-aberration
- Advantage: the selected ESAs possess clear combinatorial structure
- Disadvantage: the trade-off between important and unimportant effects may be too extreme

Shifted Wordtype Pattern and $W_{s s}$-Aberration

- Start with W_{s}, shift the patterns involving only noise factors rightward to proper positions

$$
W_{s s}=\left(A_{2.1}, A_{1.2}, \ldots, A_{4.0}, A_{3.2}, \mathbf{A}_{\mathbf{0 . 3}}, A_{2.3}, A_{4.1}, \ldots, A_{4.2}, \mathbf{A}_{\mathbf{0 . 4}} \ldots\right)
$$

- $W_{s s}$-aberration and minimum $W_{s s}$-aberration can be defined.
- Other possible milder trade-off schemes could also be used.
- Often lead to the same optimal ESA as the split wordtype patterns.

Tables of Optimal ESAs with minimum $\left(W_{s m}, W_{s n}\right)$-Aberration

Design	generator	clear 2fi
16-run:		
$(2,4)$	$a b c$ ABad	(2, 1, 0, 4, 2)
$(2,5)$	$a b d$ ace $A B b c$	(2, 0, 0, 2, 0)
$(2,6)$	$a b d$ ace bcf $A B a b c$	(2, 0, 0, 0, 0)
32-run:		
$(4,6)$	$a b d$ ace bcf $A C a b c A B D a$	$(4,0,0,8,0)$
$(5,5)$	$a b d$ ace $A C b c B D b c A B E a$	$(5,0,0,4,0)$
$(6,4)$	$a b c A B D a A C E a B C F a A B C b d$	$(6,1,0,6,2)$
$(2,9)$	$a b e ~ a c f ~ b c g ~ a b c h ~ a d i ~ A B b d ~$	(2, 0, 0, 10, 0)
64-run:		
$(4,8)$	abe acf bcg Aabch ACad BDabcd	$(4,2,5,20,4)$
$(8,4)$	Cabc Dabd AEacd BFacd ABGab ABHbcd	(8, 4, 12, 24, 0)
$(4,9)$	abe acf bcg adh Aabci $A C b d$ ABDacd	(4, 1, 5, 20, 2)
$(5,8)$	$a b d$ ace bcf abcg ABDa ACEb BCch	$(5,1,2,26,5)$
.

General Single Arrays

- When SCOA arrays exists, general single arrays can also be considered.
- It is not conclusive which criterion we should use for selecting optimal genenal single array
- Use all $W_{s^{-}},\left(W_{s m}, W_{s n}\right)$ - and $W_{s s^{\prime}}$-aberrations and compare the optimal designs.
- Other considerations may be used to determine which optimal design to use in practice.

Table of General Optimal Single Arrays

Design	Defining Generators	W_{s}	$\left(W_{s m}, W_{s n}\right)$	$W_{s s}$	COA	MA
16-Run:						
\ldots	\ldots	\ldots		\ldots		
$(3,3)$	$A B C a A B b c$	$\sqrt{ }$				$\sqrt{ }$
$(3,3)$	$A B C a a b c$		$\sqrt{ }$	$\sqrt{ }$		
\cdots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
32-Run:						
. .	. .	\ldots	\ldots	\ldots	\ldots	.
$(3,4)$	$a b c d$ ABCab	$\sqrt{ }$				$\sqrt{ }$
$(4,3)$	$A B C D A B a b c$	$\sqrt{ }$			\checkmark	$\sqrt{ }$
$(4,3)$	$a b c A B C D a$		\checkmark	\checkmark		
$(5,2)$	$A B C D A B E a b$	$\sqrt{ }$	$\sqrt{ }$	\checkmark		$\sqrt{ }$
		. \cdot	. \cdot	\cdots	\ldots	\ldots
64-run:						
$(3,5)$	ABabd Cabce	$\sqrt{ }$			\checkmark	$\sqrt{ }$
$(4,4)$	Aabcd ABCDa	$\sqrt{ }$				$\sqrt{ }$
\cdots	\ldots	\ldots	. .	\cdots

Conclusion: An Example

- Four control factors (A, B, C, D) and three noise factors (a, b, c) in a RPD experiment
- If can afford to conduct 64 runs, the optimal SCOA is genereated by

$$
d_{1}: I=A B C D=A B a b d=A C a c e ;
$$

[The optimal general single array is generated by

$$
d_{2}: I=a b c e=A C a b d=A B C D b c
$$

if crossing structure is not crucial, d_{2} is more attractive.

- If can afford to conduct 32 runs only, then

32-run SCOA does not exists
optimal economical single array is generated by

$$
d_{3}: I=A B a c=A B b d=A a b d=B C D a b
$$

- The designs are obtained from the complete tables.

