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J-characteristics (Jk) of D:
Let                                a subset of k columns of D. Then

When D is a regular design, 

Notations and DefinitionsNotations and Definitions

Let D be a design of N runs and n factors.
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Notations and DefinitionsNotations and Definitions
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Generalized Resolution of D:
Suppose that r is the smallest integer such that                . Then we define

the generalized resolution of D.
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Basics on Quaternary (ZBasics on Quaternary (Z44) Codes) Codes

Algorithms of using Z4-codes to generate nonregular designs:
1. Let G (generator matrix) be an r x n full-rank matrix over Z4.
2. A 4-level design C is formed based on G.
3. Applying                   , a 2-level design D is formed based on C.
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Gray map

Bijection Transformation of Gray Map:
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Basics on Quaternary (ZBasics on Quaternary (Z44) Codes) Codes

Example:
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1. Given a 2 x 4 generator matrix:

2. A 4-level design C is formed based on G.

3. A 2-level design D is formed based on C through

Gray map.
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Generalized Resolution = 4.0
(GOOD DESIGN)



Summaries on Previous ResultsSummaries on Previous Results

Nordstrom and Robinson Code:
Hedayat, Sloane and Stufken (1999); Xu (2005)
It can form a 256 runs, 16 columns designs.
• Generalized Resolution = 6.5
• Minimum Runs to achieve this in 

Regular Design = 512 runs ⎟⎟
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Design Construction with GR = 3.5:
Xu and Wong (2005)
Rule of Eliminating Columns:
1. Delete columns that do not contain any 1’s
2. Delete columns whose first non-zero and non-two entry are 3’s.
Then the rest of the columns will form a generating matrix with GR=3.5.



Summaries on Previous ResultsSummaries on Previous Results

Example - 16 runs design:

1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

Result:

From the list of all possible columns:
Step #1: Delete columns that do not contain any 1’s
Step #2: Delete columns whose first non-zero and non-two entry are 3’s.

1 0 1 2 3 1 1
0 1 1 1 1 2 3
1 0 1 2 1 1
0 1 1 1 2 3
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Generalized Resolution = 3.5



New Applications I:New Applications I:
Design Construction with Resolution 4.0Design Construction with Resolution 4.0

Additional Step on Previous Algorithm:

1 0 1 2 1 1
0 1 1 1 2 3

Result from Previous Steps:

Step #3: Delete columns whose sum of columns entries are even.

Result:

1 0 2 1
0 1 1 2 ⎟⎟
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Generalized Resolution = 4.0



New Applications I:New Applications I:
Design Construction with Resolution 4.0Design Construction with Resolution 4.0

Maximum Columns of Design with GR=4.0:

# Rows in G # Columns in G Dimension of D Resolution

2 4 16 x 8 4.0

3 16 64 x 32 4.0

4 64 256 x 128 4.0

: : : :

N 4n-1 4n x 4n/2 4.0

This table suggests that the maximum columns of design with 
GR =4.0 is N/2 with N runs.
Previous complete search algorithm breaks down when N>256.
This construction generalizes the case for higher run sizes.



New Applications II:New Applications II:
Fast Search Results on Optimal 2Fast Search Results on Optimal 2nn--22 DesignsDesigns

General Structure for Optimal (over Z4) 2n-2 Designs:
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Notation:

G = Ik(a,b) design
where

k = size of Identity matrix
a = number of 1’s in the last column
b = number of 2’s in the last column

Example:
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Optimality is measured in terms of the Generalized Resolution.



decimal = 1–2^(-1) = 0.5
GR = min{2b+a+1,2(a+1)}=min{6,8}=6.x
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New Applications II:New Applications II:
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Fast Calculation on Generalized Resolution of Even Design:

Example:

1. If b ≥ a, then GR = 2(a+1). 

2. If b < a, then GR = min{2b+a+1 , 2(a+1)} + decimals.
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GR = 6.0+0.5=6.5



decimal = 1–2^(-1) = 0.5
GR = min{2b+a+1,2(a+1)}=min{5,8}=5.x

New Applications II:New Applications II:
Fast Search Results on Optimal 2Fast Search Results on Optimal 2nn--22 DesignsDesigns

Fast Calculation on Generalized Resolution of Odd Design:

Example:

1. If b ≥ a, then GR = 2(a+1). 

2. If b < a, then GR = min{2b+a , 2(a+1)} + decimals.
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GR = 2(a+1) = 2(2+1) = 6.0
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Search Results on Optimal Designs of different runs:

k 2 2 3 3 4 4 5 5 6 6 7

#col 6 6 8 8 10 10 12 12 14 14 16

Run 8 16 32 64 128 256 512 1024 2048 4096 8192

(a,b) (1,1) (1,1) (2,1) (2,1) (2,2) (3,1) (3,2) (3,2) (4,2) (4,2) (4,3)

GR 3.0 4.0 4.5 5.5 6.0 6.5 7.75 8.0 8.75 9.75 10.0

This search algorithm bypasses the actual calculation of J-characteristics
wordlength pattern

Computer time on searching the optimal designs of particular run size 
is much less than the traditional methods
Optimality of exceptionally large design is possible



Future ExtensionsFuture Extensions

1. Construction of Designs with higher Resolutions.
Algorithm on GR = 4.5 Construction
Designs Constructions with properties similar  
to Nordstrom-Robinson Design.

2. Extensions of Fast Search Algorithms.
Optimality of 2n-4 Design.
Ultimate optimization of designs.



ConclusionConclusion

1. An Introduction on the basics of the construction of two-
level nonregular design using quaternary codes are 
given.

2. Previous research shows that the designs generated 
have better minimum aberration than regular designs in 
terms of resolutions and aberration.

3. A new construction method generates the design with 
GR=4.0, an extension from the previous GR=3.5.

4. A new search method provides some new results to fast 
search for the optimal designs with 2n-2 runs.

5. Future extensions on the design construction, fast 
search algorithm are suggested.
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