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Notations and Definitions

Let D be a design of N runs and n factors.

J-characteristics (J,) of D:

Let 5= {Xl e : xk } a subset of k columns of D. Then
ZHX 0<J,(s)<N
When D is a regular d681lg_Ill J (s)e{o,N}
Example:
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Notations and Definitions

Generalized Resolution of D:

Suppose that r 1s the smallest integer such that

R(D):r+(1—max

the generalized resolution of D.

Example:

-1 | -1 | -1 J,(s

)
ENEN ENEEERRO A
)

+1 | +1 | +1

+1 | +1 | +1 R(D §r+(1

AlB|c Ji(s)=10,00} r

max J, (s)=2

1E 2

max J ($)>0  Then we define
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Basics on Quaternary (Z,) Codes

Algorithms of using Z,-codes to generate nonregular designs:
1.  Let G (generator matrix) be an r x n full-rank matrix over Z,.

2.  A4-level design C 1s formed based on G.
3.  Applying Gray map, a 2-level design D is formed based on C.

Bijection Transformation of Gray Map:

R N
Z,> 100 01 11 10
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Basics on Quaternary (Z,) Codes

Example:

1. Given a 2 x 4 generator matrix:
2. A 4-level design C 1s formed based on G.
3. A 2-level design D 1s formed based on C through
Gray map.
Z, 10 1 2 3
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Generalized Resolution = 4.0
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Summaries on Previous Results

Nordstrom and Robinson Code:
Hedayat, Sloane and Stufken (1999); Xu (2005)

It can form a 256 runs, 16 columns designs. 1 00 0 2 1 1 1
* Generalized Resolution = 6.5 01 001 3 12
e Minimum Runs to achieve this in 1= 00101 2 3 1

Regular Design = 512 runs 000111 2 3

Design Construction with GR = 3.5:

Xu and Wong (2005)

Rule of Eliminating Columns:

1. Delete columns that do not contain any 1’s

2. Delete columns whose first non-zero and non-two entry are 3’s.

Then the rest of the columns will form a generating matrix with GR=3.5.
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Summaries on Previous Results

Example - 16 runs design:

From the list of all possible columns:

Step #1: Delete columns that do not contain any 1°s

Step #2: Delete columns whose first non-zero and non-two entry are 3’s.
Result:

12| 3L0| 12(®| 0| 1| 2P3| 0] 1| 2| 3
ololol 1] 4P1|H| 2| & 212|3/ 3| 3|3

Generalized Resolution = 3.5
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New Applications I:
Design Construction with Resolution 4.0

Additional Step on Previous Algorithm:

Result from Previous Steps:
Step #3: Delete columns whose sum of columns entries are even.

Result:

1 oL1 2|1 | o[ 1] |27 |1
1[40 [ 1{22 1) |3

Generalized Resolution = 4.0
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New Applications I:
Design Construction with Resolution 4.0

Maximum Columns of Design with GR=4.0:

# Rows in G # Columns in G Dimension of D Resolution
2 4 16 x 8 4.0
3 16 64 x 32 4.0
4 64 256 x 128 4.0
N 4n-1 4n x 4n/2 4.0

This table suggests that the maximum columns of design with

GR =4.0 1s N/2 with N runs.

Previous complete search algorithm breaks down when N>256.

This construction generalizes the case for higher run sizes. UCLA



New Applications II'
iren Resulis o Optirrel 7 Jes]gns
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General Structure for Optimal (over Z,) 22 Designs:
) .
b

2
i where

k = size of Identity matrix
a = number of 1’°s in the last column
1 b = number of 2’s in the last column

Notation:
G =1, (a,b) design

Optimality is measured in terms of the Generalized Resolution.

Example: ]
1 go go ;2‘2
e 0 O
0% 11 O RS
0 0 17 1|GR=6.0
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New Applications Il

| Results on Opilrnel 2" Jes]gns
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Fast Calculation on Generalized Resolution of Even Design:

1. If b 2 a, then GR = 2(a+1).
2. Ifb <a, then GR = min{2b+a+1 , 2(a+1)} + decimals.

_a mod1

3. decimal =1-2 2

Example:

| (2(3 )1:} T

0
1
0
0
0
Iy

GR = naﬁ@bz—l—(a—l— 2_a ((]z)i:wml%{S ,81=6.X

decnnal—l —27-1)=0.5

GR =6.0+0.5=6.5 UCLA



New Applications Il

| Results on Opilrnel 2" Jes]gns
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Fast Calculation on Generalized Resolution of Odd Design:

1. If b 2 a, then GR = 2(a+1).
2. Ifb<a, then GR = min{2b+a, 2(a+1)} + decimals.

_a mod1

3. decimal =1-2 2

Example:

| (2(3 )1:} T

0
1
0
0
0
Iy

GR = naﬁ@bz—l—(a—l— 2_a ((]z)i:wml%{B ,81=5.X

decnnal—l —27-1)=0.5

GR =5.0+0.5=5.5 UCLA
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New Applications Il

Iﬂ—

Hasulis

earcr on Optlrnel 2" Jes]gns
Search Results on Optimal Designs of different runs:

k | 2 | 2| 3| 3| 4| 4|5 |5 ]| 6|6 |7
#col| 6 | 6 | 8 | 8 |10 |10 |12 | 12 | 14 | 14 | 16
Run| 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192
@b) | 1,1 | (1,1) | 2,1) | 21) | 22) | (3,1) | (3,2) | (3,2) | 4,2) | (4,2) | (4,3)
GR |30 |40 | 45|55 |60 |65 |7.75| 8.0 |8.75|9.75| 10.0

This search algorithm bypasses the actual calculation of J-characteristics
wordlength pattern

- Computer time on searching the optimal designs of particular run size
1s much less than the traditional methods

—> Optimality of exceptionally large design is possible
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Future Extensions

1. Construction of Designs with higher Resolutions.
—> Algorithm on GR = 4.5 Construction
—> Designs Constructions with properties similar

to Nordstrom-Robinson Design.
2. Extensions of Fast Search Algorithms.

—> Optimality of 2™4 Design.
—> Ultimate optimization of designs.
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Conclusion

. An Introduction on the basics of the construction of two-
level nonregular design using quaternary codes are
given.

. Previous research shows that the designs generated
have better minimum aberration than regular designs in
terms of resolutions and aberration.

. A new construction method generates the design with
GR=4.0, an extension from the previous GR=3.5.

. A new search method provides some new results to fast
search for the optimal designs with 2"2 runs.

. Future extensions on the design construction, fast
search algorithm are suggested.
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