Applications of Using Quaternary Codes to Nonregular Designs

Frederick K.H. Phoa Department of Statistics University of California at Los Angeles

06/09/2006 Joint Research Conference on Statistics in Quality, Industry and Technology

Email: fredphoa@stat.ucla.edu

Research supported by NSF DMS Grant

Content

- 1. Notations and Definitions on Nonregular Designs
- 2. Basics on Quaternary Codes
- 3. Summaries on Previous Results
- 4. New Applications I:

Design Construction with Resolution 4.0

- New Applications II: Fast Search Results on Optimal 2ⁿ⁻² Designs
- 6. Future Extensions
- 7. Conclusion

Notations and Definitions

Let D be a design of N runs and n factors.

 $\frac{J\text{-characteristics } (J_k) \text{ of } D:}{\text{Let } s = \{x_1, \dots, x_k\} \text{ a subset of k columns of D. Then}} \\ J_k(s) = \left| \sum_{i=1}^N \prod_{j=1}^k x_{ij} \right| \qquad 0 \le J_k(s) \le N$

When D is a regular design, $J_k(s) \in \{0, N\}$

Example:

А	В	С	$A \Rightarrow I = (A) = (-1) + (-1) + (+1) + (+1) + (+1) = (-1) + (-1) + (-1) = 0$
-1	-1	-1	$AB \stackrel{!}{,} \int_{2}^{2} (AB) = (1) - 1 + (-1) + (-1) + (+1) + (-1) = 0$ $BC \stackrel{!}{,} \int_{2}^{2} (AB) \stackrel{!}{,} = (-1) + (-1) + (-1) + (+1) + (-1) = 0$
-1	+1	+1	$\mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} $
+1	-1	+1	$\rightarrow J_{3}(s) = J_{23}(ABBC) \subset J_{23}$
+1	+1	-1	

UCL

Notations and Definitions

Generalized Resolution of D:

Suppose that r is the smallest integer such that $\max_{|s|=r} J_r(s) > 0$. Then we define

$$R(D) = r + \left(1 - \max_{|s|=k} \frac{J_k(s)}{N}\right)$$

the generalized resolution of D.

Example:

А	В	С		
-1	-1	-1		
-1	+1	+1		
+1	+1	+1		
+1	+1	+1		

$$J_{1}(s) = \{0,0,0\} \quad r = B$$

$$J_{2}(s) = \{0,0,0\} \quad N = 4$$

$$J_{3}(s) = \{0\} \quad \max J_{k}(s) = 2$$

$$R(D) \equiv r + \left(1 - \max \frac{J_{k}(s)}{N}\right) = 3 + \frac{2}{4} = 3.6$$

Basics on Quaternary (Z₄) Codes

<u>Algorithms of using Z_4 -codes to generate nonregular designs:</u>

- 1. Let G (generator matrix) be an r x n full-rank matrix over Z_4 .
- 2. A 4-level design C is formed based on G.
- 3. Applying **Gray map**, a 2-level design D is formed based on C.

Bijection Transformation of Gray Map:

Basics on Quaternary (Z₄) Codes

Example:

- 1. Given a 2 x 4 generator matrix:
- 2. A 4-level design C is formed based on G.
- 3. A 2-level design D is formed based on C through Gray map.

$$Z_4$$
0123 \downarrow \downarrow \downarrow \downarrow \downarrow Z_2^2 00011011

Generalized Resolution = 4.0 (GOOD DESIGN)

$$\mathcal{F} = G = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0^1 & 0^1 & 1^2 & 0 & 1 & 1 & 1 \\
0 & 0^2 & 1^2 & 1^0 & 1 & 1 & 0 & 0 \\
0 & 0^3 & 1^3 & 0^2 & 1 & 0 & 1 & 1 \\
0^1 & 1^0 & 0^2 & 0^1 & 1 & 1 & 0 & 1 \\
0^1 & 1^2 & 1^0 & 1^1 & 0 & 0 & 0 & 1 \\
0^1 & 1^3 & 1^1 & 0^3 & 0 & 1 & 1 & 0 \\
1^4 & 1^0 0 & 2^2 & 0^1 & 0 & 1 & 1 \\
1^6 & 1^1 & 1^0 & 1^0 & 0^2 & 1 & 0 & 1 \\
1^2 & 1^2 & 1^2 & 1^2 & 1^2 & 1 & 1 & 1 \\
1^2 & 1^3 & 1^3 & 0^0 & 1 & 0 & 0 & 0 \\
1^3 & 0^0 & 0^2 & 0^3 & 1 & 1 & 1 & 0 \\
1^3 & 0^1 & 0^3 & 1^1 & 1 & 0 & 0 & 1 \\
1^3 & 0^1 & 0^3 & 1^1 & 1 & 0 & 0 & 1 \\
1^3 & 0^1 & 0^3 & 1^1 & 0 & 0 & 1 & 0 \\
1^3 & 0^3 & 1^1 & 0^1 & 0 & 1 & 0 & 1
\end{pmatrix}$$

Summaries on Previous Results

Nordstrom and Robinson Code:

Hedayat, Sloane and Stufken (1999); Xu (2005) It can form a 256 runs, 16 columns designs.

- Generalized Resolution = 6.5
- Minimum Runs to achieve this in Regular Design = 512 runs

$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 2 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 3 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 & 2 & 3 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 2 & 3 \end{pmatrix}$

<u>Design Construction with GR = 3.5:</u> Xu and Wong (2005)

Rule of Eliminating Columns:

1. Delete columns that do not contain any 1's

2. Delete columns whose first non-zero and non-two entry are 3's.

Then the rest of the columns will form a generating matrix with GR=3.5.

Summaries on Previous Results

Example - 16 runs design:

From the list of all possible columns: Step #1: Delete columns that do not contain any 1's Step #2: Delete columns whose first non-zero and non-two entry are 3's. Result:

Generalized Resolution = 3.5

UCI A

New Applications I: Design Construction with Resolution 4.0

Additional Step on Previous Algorithm:

Result from Previous Steps:

Step #3: Delete columns whose sum of columns entries are even. Result:

Generalized Resolution = 4.0

New Applications I: Design Construction with Resolution 4.0

Maximum Columns of Design with GR=4.0:

# Rows in G	# Columns in G	Dimension of D	Resolution		
2	4	16 x 8	4.0		
3	16	64 x 32	4.0		
4	64	256 x 128	4.0		
	:	:			
Ν	4 ⁿ⁻¹	4 ⁿ x 4 ⁿ /2	4.0		

This table suggests that the maximum columns of design with GR = 4.0 is N/2 with N runs.

Previous complete search algorithm breaks down when N>256. This construction generalizes the case for higher run sizes.

Fast Search Results on Optimal 2ⁿ⁻² Designs

General Structure for Optimal (over Z₄) 2ⁿ⁻² Designs:

Notation:

 $G = I_k(a,b)$ design

where

- k = size of Identity matrix
- a = number of 1's in the last column
- b = number of 2's in the last column

Optimality is measured in terms of the Generalized Resolution.

<u>Example:</u>

Fast Search Results on Optimal 2ⁿ⁻² Designs

Fast Calculation on Generalized Resolution of Even Design:

- 1. If $b \ge a$, then GR = 2(a+1).
- 2. If b < a, then $GR = min\{2b+a+1, 2(a+1)\} + decimals$.

3.
$$decimal = 1 - 2^{-\frac{a}{2} \mod a}$$

Example:

$$I_{5}(2(3)) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

GR = min{2b+a+1,2(a+1)}=min{6,8}=6.x
GR = 2(a+1)=2(2+1)=6.0
GR = 6.0+0.5=6.5

UCL

Fast Search Results on Optimal 2ⁿ⁻² Designs

Fast Calculation on Generalized Resolution of Odd Design:

- 1. If $b \ge a$, then GR = 2(a+1).
- 2. If b < a, then $GR = min\{2b+a, 2(a+1)\}$ + decimals.

3.
$$decimal = 1 - 2^{-\frac{a}{2} \mod a}$$

Example:

UCL

Fast Search Results on Optimal 2ⁿ⁻² Designs

Search Results on Optimal Designs of different runs:

k	2	2	3	3	4	4	5	5	6	6	7
#col	6	6	8	8	10	10	12	12	14	14	16
Run	8	16	32	64	128	256	512	1024	2048	4096	8192
(a,b)	(1,1)	(1,1)	(2,1)	(2,1)	(2,2)	(3,1)	(3,2)	(3,2)	(4,2)	(4,2)	(4,3)
GR	3.0	4.0	4.5	5.5	6.0	6.5	7.75	8.0	8.75	9.75	10.0

This search algorithm bypasses the actual calculation of J-characteristics wordlength pattern

- → Computer time on searching the optimal designs of particular run size is much less than the traditional methods
- \rightarrow Optimality of exceptionally large design is possible

Future Extensions

1. Construction of Designs with higher Resolutions.

- \rightarrow Algorithm on GR = 4.5 Construction
- → Designs Constructions with properties similar to Nordstrom-Robinson Design.
- 2. Extensions of Fast Search Algorithms.
 → Optimality of 2ⁿ⁻⁴ Design.
 → Ultimate optimization of designs.

Conclusion

- 1. An Introduction on the basics of the construction of twolevel nonregular design using quaternary codes are given.
- 2. Previous research shows that the designs generated have better minimum aberration than regular designs in terms of resolutions and aberration.
- 3. A new construction method generates the design with GR=4.0, an extension from the previous GR=3.5.
- 4. A new search method provides some new results to fast search for the optimal designs with 2ⁿ⁻² runs.
- 5. Future extensions on the design construction, fast search algorithm are suggested.

Acknowledgements

Professor Hongquan Xu UCLA Department of Statistics for his valuable and fruitful comments and discussions.

References

- 1. Deng, L.Y. and Tang, B (1999). Generalized resolution and minimum aberration criteria for Plackett-Burman and other nonregular factorial designs, Statistica Sinica, 9, 1071 – 1082.
- 2. Hedayat, A.S., Sloane, N.J.A. and Stufken, J. (1999) Orthogonal Arrays: Theory and Applications, Springer, New York.
- 3. Xu, H. (2005) Some nonregular designs from the Nordstrom and Robinson code and their statistical properties, Biometrika, 92, 385 397.
- 4. Xu, H. and Wong, A. (2005) Two-level Nonregular designs from quaternary linear codes, accepted by Statistica Sinica.

