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What 1s Public-Health Surveillance?
« /'

“Public health surveillance is the ongoing
collection, analysis, interpretation, and
dissemination of health data for the purpose of
preventing and controlling disease, injury, and
other health problems.”

- Thacker, S. B. (2000) Principles and Practice of
Public Health Surveillance, 2nd Ed.



Popularity of Public-Health
Survelllance

e There has been greater interest in public-
health surveillance lately.
- More data available from the internet
- Computers allow for quick assessment

e The amount of literature Iin this area is growing
rapidly.
— Link to methods used in Industrial Statistical
Process Control (SPC)

- Many methods incorporate control charts



Survelillance Method Concepts for
Monitoring Disease Clusters

e Goal of these Methods:

- To quickly detect a disease cluster in a geographic
area as it is forming so that preventative measures

can be taken.

e Retrospective vs. Prospective Analyses:

— In retrospective analyses data is collected over time
but assessment is only done once at the end of the
study period. -- Delayed detection

— In prospective analyses data is collected over time
and assessment is done each time a new
observation is collected. -- Quicker detection



Data used to Monitor Disease
Clusters

«
e Data for these Methods:

- Space Component (Location in the geographic area
where a disease incidence occurs.)

- Time Component (Time at which a disease
Incidence occurs.)

e Forms of the Data:

- Aggregation in Space and Time (Raubertas, 1989;
Rogerson and Yamada, 2004)

- Aggregation in Space only (Rogerson, 1997)
- No Aggregation (Rogerson, 2001)



The Problem
« /'

e \We want to detect clusters of disease In a
geographical region.

e \We have data available that is aggregated In
space and time.

e In some cases, we may have information on
population, age, gender, and baseline disease
Incidence.



Example

Yearly Male Thyroid Cancer Incidences in New Mexico (1973-1992)
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Method Overview
« /'

e Prospectively monitor an incidence surface for
the region over time

e Surface Is estimated at each time point

e Estimate is obtained from a Poisson regression
model with regressors from the Haar wavelet
basis

e Current and past observations are used to
estimate the surface

e Current observations are weighted more
heavily



Outline
« /'

e \Wavelet Introduction

e Monitoring Method
— Case 1: Baseline Incidence Known
-~ Case 2: Baseline Incidence Unknown

e Further Work



Wavelet Introduction
What are Wavelets?

e \Wavelets are functions that have certain
mathematical properties.

e A wavelet basis Is a family of similar wavelet
functions that I1s constructed from the ‘mother
wavelet'.

e Two common wavelet bases are the Haar
basis and the Daubechies basis.



Wavelet Introduction
What do Wavelets do?

e \Wavelets can be used to break down functions
or signals into components of different scale or
resolution.

e The lower resolutions represent the general
shape of the function.

e The higher resolutions fill in more detall.



Wavelet Introduction
Traditional Uses of Wavelets

e Signal Processing
- Radio
— Cell Phones
e Image Processing
-~ Computer Images - Internet

e Data Compression
- Medical Images - X-rays
- FBI fingerprints



Wavelet Introduction
Similarity to Fourier Decomposition

e The wavelet decomposition of a function is
analogous to the Fourier decomposition.

e Fourier decomposition breaks down functions
Into a sum of sine and cosine functions with
different periods.

e A function can be approximated by a finite sum

of these Fourier components.

J
F,(x) = %ao + ) [a,c0s(jx) + b, sin(jx)]
j=1



Wavelet Introduction
The Haar Mother Wavelet

Mother Wavelet
of the Haar Wavelet Basis
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Wavelet Introduction
The Haar Wavelet Basis

e Haar family is produced
by dilating and translating Basis Functions

the mother wavelet

e |=0,1, 2, ...i1sthe

dilation index

Haar Wavelet Function
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e Basis Function:
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Wavelet Introduction
Properties of Wavelet Bases

e A family of wavelets is a complete orthonormal
system for L2(%R).

- Wauvelet functions from the same family are
orthogonal.

— Any L2-function, f, can be approximated by a finite
linear combination of wavelet functions from the
same family.



Wavelet Introduction
Aside: L2-Functions

e An L2-function is a function that is square-integrable
and whose range is the set of real numbers.

e A square-intregable function is one where

T\f(x)\zdx < oo

—00

e Therefore, the wavelet approximation of a function is
only approximate in the L2 meaning.

Hf(x) - Approximation\zdx ~0

—00



Wavelet Introduction
Haar Wavelet Function Approximation

e A function can be approximated with the
following linear combination of Haar wavelets:
J 21
f(X)~ag + Z Zajk\l’jk(x) where x € [0,1)
i=0 k=0

e The coefficients must be estimated.

e Regression can be used to do this easily.
- [B’s represent the wavelet coefficients
— regressors are the Haar wavelet functions



Wavelet Introduction
Example — Univariate Density Estimation

Normal and Uniform Probability Curve

0.8 1.0
|

Prob.
0.6

0.4

0.2

0.0

h I| T II uu_lu_luL|||menlu1ou|_u_|rLU|LLLmu-ll1n||mu_um_|_|_|_

0.0 0.2 0.4 0.6 0.8 1.0

X



Wavelet Introduction
Example — Univariate Density Estimation

Wavelet Estimate
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Wavelet Introduction
Example — Univariate Density Estimation

Haar Wavelet Curve Estimate (j=4) Haar Wavelet Curve Estimate (j =5)
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Wavelet Introduction
Haar Wavelet Scaling Function

e Notice that x must be between 0 inclusively and 1
exclusively.

e To approximate a function with different support,
a scaling function, also called the father wavelet,
IS used.

e Haar scaling function for x € [0,1) Is ¢(X) = Ijg 1)(X)

e Haar scaling function for other domains is
d(X) = 2= ¢(2-k)



Wavelet Introduction
Two-Dimensional Haar Wavelet Basis

e The two-dimensional Haar wavelet basis can
be constructed by taking cross products of the
wavelet and scaling functions over x, € (0,1]
and x, € (0,1] :
- Y (Xg) X 9(Xy)
- ¢ (Xq) x y(Xyp)
- Y(Xy) x y(Xy)




Wavelet Introduction
Haar Wavelet Surface Approximation

e A surface can be approximated with the
following linear combination of Haar wavelets:

2]1_1 2]2_1
f(x,X5) = ag + Z Zahk Wik, (Xq) + Z Zajzk Wik, (X2)
=0k, = Jo=0K;=

J, 2113, 221

T Z Z Z Zajl K1JoK \ljjlk (Xl)wlzk (XZ)

},=0k,=0],=0k,=0



Wavelet Introduction
Example — Multivariate Density Estimation

Probability Surface Disease Occurrences Generated from Probability Surfa
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Wavelet Introduction
Example — Multivariate Density Estimation

Haar Wavelet Surface Estimate (j =2) Haar Wavelet Surface Estimate (j =3)




Monitoring Method

Why use Wavelets for Monitoring?
o]

e \Wavelets can easily model an incidence

surface of any form and still give a parametric
model for testing.

e \Wavelet functions are orthogonal so the
coefficients in the model are independent.

e The multiresolution of wavelet functions allows
us to detect clusters of different size.

e Multiresolution can also give us more powerful
global tests.



Monitoring Method

Mapping of Counties to Wavelet Domain

Allocation of Counties in New Mexico to Wavelet Domain
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Monitoring Method
Case 1: Data

e Data is coming in at equal time intervals.

e At each time we get a count or rate of incidence for
each county.

e Each observation is assumed to be independent.

e Only the current observation is used to estimate
the incidence surface.



Monitoring Method

Case 1: Surface Estimation

Poisson Regression Model:

u = e:—lﬁO"'LPSEs

LPS are the wavelet function values over the region

A set of Haar wavelet functions for Longitude

A set of Haar wavelet functions for Latitude

e All cross products of the wavelet functions for
Longitude and Latitude



Monitoring Method

Case 1. Surface Estimation Example

Randomly Generated Incidence Counts at Time = 17
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Monitoring Method

Possible Clusters

Entire Region

2 Subregions

4 Subregions

8 Subregions

16 Subregions

32 Subregions




Monitoring Method
Case 1: Control Charts for Global Statistics

e Does the surface change from a baseline?

Hy: Bs = BeaseLine

e Does the mean incidence increase over the
entire region?
Hy: Bo = Bo gaseLINE
*The Wald Test or GLRT can be used here.

e Monitor global statistics over time with Chi-
square or Normal CUSUM control charts
designed using standard ARL results.



ing Incidence Surface at Time = 10
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ing Incidence Surface at Time = 16
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Under(lé/ing Incidence Surface at Time = 30
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Monitoring Method

Case 1: An Alternative Global Statistic

e A weighted y?test can be used in place of the
Wald test.

e Wald=a'a <~ y,°
e Weighted y>=a'Wa < 1y ,° = I'(n/2,21)

e \W Is a weight matrix where the weights can be
chosen to emphasize possible clusters of most
Importance.



Monitoring Method

Case 1: Control Charts for Local Statistics

e Detect multi-level clustering
H,: B; = O — test appropriate coefficients OR
H,: predicted A; = baseline A, for each cluster |.

e Detect increases from baseline in individual areas
H,: predicted A; = baseline A; for each county 1I.

e Monitor local statistics over time with Chi-square
or Normal CUSUM control charts designed using
standard ARL results.
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CUSUM
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Monitoring Method
Case 2: Data

e Data is coming in at equal time intervals. -- Same
as Case 1

e At each time we get a count or rate of incidence for
each county. -- Same as Case 1

e Each observation is assumed to be independent.
-- Same as Case 1

e Current and past observations are used to
estimate the incidence surface. Observations are
weighted using the EWMA weighting scheme.



Monitoring Method

Case 2: Surface Estimation
]
e Regressors for Space
~ Same asin Case 1
e Regressor for Time

- Change in time of each observation and the current
observation

- Motivation for this comes from the Taylor Series
Expansion of a function -- f(t) = f(T) + (t — T)f'(T)
e Regressors for Space and Time

— All space regressors are multiplied by the time
regressor



Monitoring Method

Case 2: Surface Estimation

Poisson Regression Model:
u = e;lBo +WsB+0:Br +[¥sx07 1B

LPS are the wavelet function values over the region
(Space Regressor Matrix)

8 are the changes in time from the current time
(Time regressor)

[\PS XST ] are the products of the space and time
o regressors



Under&ling Incidence Surface at Time = 13
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Underleling Incidence Surface at Time = 18
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Monitoring Method
Case 2: Global Statistics

e Does the surface change over time?
H,: {BT} =0
B | T
e Does the mean incidence increase over time?
Ho: By =0

e Is there space-time interaction?
Ho: Bst =0

*Same test statistics for Case 1 can be used here.



Monitoring Method
Case 2: Local Statistics

c- |
e Detect multi-level clustering
H,: B; = O — test appropriate change coefficients
OR
H,: predicted change in A; = O for each cluster 1.

e Detect relative mean increases in individual
counties

H,: predicted change in A; = 0 for each county 1.



Monitoring Method
Case 2: Control Charts

e Similar control charts to those used in Case 1
are used to monitor the global and local
statistics.

e There Is autocorrelation present because past
observations are used In the estimation
Process.

e ARL performance must be determined by
simulation to design chart.



Monitoring Method
Further Work

e Covariate information, such as population size
of the county, needs to be incorporated by
changing the values of the wavelet functions.

e The wavelet values are changed so that the
orthogonality is maintained with respect to the
covariate.

e Covariate information on age and gender can
easily be added to the model.



Monitoring Method
Further Work

e Problem with number of counties not equal to a
power of two can be solved in two ways:

- By assigning zero incidences to these squares at
each time period

— Or possibly by leaving out the observations
associated with these cells

e Need to explore how weights of past
observations influence performance
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