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What is Public-Health Surveillance?

“Public health surveillance is the ongoing 
collection, analysis, interpretation, and 
dissemination of health data for the purpose of 
preventing and controlling disease, injury, and 
other health problems.”

– Thacker, S. B.  (2000) Principles and Practice of 
Public Health Surveillance, 2nd Ed.
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Popularity of Public-Health 
Surveillance

There has been greater interest in public-
health surveillance lately.
– More data available from the internet
– Computers allow for quick assessment

The amount of literature in this area is growing 
rapidly.
– Link to methods used in Industrial Statistical 

Process Control (SPC)
– Many methods incorporate control charts
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Surveillance Method Concepts for 
Monitoring Disease Clusters

Goal of these Methods:  
– To quickly detect a disease cluster in a geographic 

area as it is forming so that preventative measures 
can be taken.

Retrospective vs. Prospective Analyses:
– In retrospective analyses data is collected over time 

but assessment is only done once at the end of the 
study period.  -- Delayed detection

– In prospective analyses data is collected over time 
and assessment is done each time a new 
observation is collected.  -- Quicker detection
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Data used to Monitor Disease 
Clusters

Data for these Methods:
– Space Component (Location in the geographic area 

where a disease incidence occurs.)
– Time Component (Time at which a disease 

incidence occurs.)
Forms of the Data:
– Aggregation in Space and Time (Raubertas, 1989; 

Rogerson and Yamada, 2004)
– Aggregation in Space only (Rogerson, 1997)
– No Aggregation (Rogerson, 2001)
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The Problem

We want to detect clusters of disease in a 
geographical region.

We have data available that is aggregated in 
space and time.

In some cases, we may have information on 
population, age, gender, and baseline disease 
incidence.
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Example

Data Source:  New Mexico Tumor Registry

Yearly Male Thyroid Cancer Incidences in New Mexico (1973-1992)
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Method Overview

Prospectively monitor an incidence surface for 
the region over time
Surface is estimated at each time point
Estimate is obtained from a Poisson regression 
model with regressors from the Haar wavelet 
basis
Current and past observations are used to 
estimate the surface
Current observations are weighted more 
heavily
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Outline

Wavelet Introduction

Monitoring Method
– Case 1:  Baseline Incidence Known
– Case 2:  Baseline Incidence Unknown

Further Work
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Wavelet Introduction
What are Wavelets?

Wavelets are functions that have certain 
mathematical properties.

A wavelet basis is a family of similar wavelet 
functions that is constructed from the ‘mother 
wavelet’.

Two common wavelet bases are the Haar
basis and the Daubechies basis.
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Wavelet Introduction
What do Wavelets do?

Wavelets can be used to break down functions 
or signals into components of different scale or 
resolution.

The lower resolutions represent the general 
shape of the function.

The higher resolutions fill in more detail.
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Wavelet Introduction
Traditional Uses of Wavelets

Signal Processing
– Radio
– Cell Phones

Image Processing
– Computer Images - Internet

Data Compression
– Medical Images - X-rays
– FBI fingerprints
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Wavelet Introduction
Similarity to Fourier Decomposition

The wavelet decomposition of a function is 
analogous to the Fourier decomposition.

Fourier decomposition breaks down functions 
into a sum of sine and cosine functions with 
different periods.

A function can be approximated by a finite sum 
of these Fourier components.
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Wavelet Introduction
The Haar Mother Wavelet
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Wavelet Introduction
The Haar Wavelet Basis

Haar family is produced 
by dilating and translating 
the mother wavelet

j = 0, 1, 2, … is the 
dilation index

k = 0, 1, …., 2j-1 is the 
translation index

Basis Function:
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Wavelet Introduction
Properties of Wavelet Bases

A family of wavelets is a complete orthonormal
system for L2(ℜ).

– Wavelet functions from the same family are 
orthogonal.

– Any L2-function, f, can be approximated by a finite 
linear combination of wavelet functions from the 
same family.
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Wavelet Introduction
Aside:  L2-Functions

An L2-function is a function that is square-integrable
and whose range is the set of real numbers.

A square-intregable function is one where 

Therefore, the wavelet approximation of a function is 
only approximate in the L2 meaning.

∞<∫
∞

∞−

dx)x(f 2

0dxionApproximat)x(f 2 ≈−∫
∞

∞−



18

Wavelet Introduction
Haar Wavelet Function Approximation

A function can be approximated with the 
following linear combination of Haar wavelets:

The coefficients must be estimated.

Regression can be used to do this easily.
– β’s represent the wavelet coefficients
– regressors are the Haar wavelet functions
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Wavelet Introduction
Example – Univariate Density Estimation
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Wavelet Introduction
Example – Univariate Density Estimation
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Wavelet Introduction
Example – Univariate Density Estimation
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Wavelet Introduction
Haar Wavelet Scaling Function

Notice that x must be between 0 inclusively and 1 
exclusively.

To approximate a function with different support, 
a scaling function, also called the father wavelet, 
is used.

Haar scaling function for x ∈ [0,1) is φ(x) = I[0,1)(x)

Haar scaling function for other domains is 
φjk(x) = 2j/2 φ(2j-k)
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Wavelet Introduction
Two-Dimensional Haar Wavelet Basis

The two-dimensional Haar wavelet basis can 
be constructed by taking cross products of the 
wavelet and scaling functions over x1 ∈ (0,1]
and x2 ∈ (0,1] :
– ψ (x1) × φ(x2) 
– φ (x1) × ψ(x2)
– ψ(x1) × ψ(x2)

x2

x1
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Wavelet Introduction
Haar Wavelet Surface Approximation

A surface can be approximated with the 
following linear combination of Haar wavelets:
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Wavelet Introduction
Example – Multivariate Density Estimation
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Wavelet Introduction
Example – Multivariate Density Estimation
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Monitoring Method
Why use Wavelets for Monitoring?

Wavelets can easily model an incidence 
surface of any form and still give a parametric 
model for testing.
Wavelet functions are orthogonal so the 
coefficients in the model are independent.
The multiresolution of wavelet functions allows 
us to detect clusters of different size.
Multiresolution can also give us more powerful 
global tests.
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Monitoring Method
Mapping of Counties to Wavelet Domain

bernalillo

catron

chaves

colfax

curry
de baca

dona ana
eddy

grant

guadalupe

harding

hidalgo

lea

lincoln

los alamos

luna

mckinley

mora

otero

quay

rio arriba

roosevelt

sandoval

san juan

san miguelsanta fe

sierra

socorro

taos

torrance

union

valencia

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Allocation of Counties in New Mexico to Wavelet Domain

Longitude

La
tit

ud
e

Hidalgo

Grant

Catron

Valencia

Bernalillo

Sandoval

McKinley

San Juan

Luna

Dona Ana

Sierra

Socorro

Torrance

Santa Fe

Los Alamos

Rio Arriba

Otero

Chaves

Lincoln

De Baca

Guadalupe

San Miguel

Mora

Taos

Eddy

Lea

Roosevelt

Curry

Quay

Harding

Union

Colfax



29

Monitoring Method
Case 1:  Data

Data is coming in at equal time intervals.

At each time we get a count or rate of incidence for 
each county.

Each observation is assumed to be independent.

Only the current observation is used to estimate 
the incidence surface.
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Monitoring Method
Case 1:  Surface Estimation

Poisson Regression Model:

SS01e βΨ+β=µ

SΨ are the wavelet function values over the region

• A set of Haar wavelet functions for Longitude
• A set of Haar wavelet functions for Latitude
• All cross products of the wavelet functions for   
Longitude and Latitude
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Monitoring Method
Case 1:  Surface Estimation Example
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Monitoring Method
Possible Clusters

 

Entire Region

2 Subregions

4 Subregions

8 Subregions

16 Subregions

32 Subregions
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Monitoring Method
Case 1:  Control Charts for Global Statistics

Does the surface change from a baseline?
H0: βS = βBASELINE

Does the mean incidence increase over the 
entire region?
H0: β0 = β0 BASELINE

Monitor global statistics over time with Chi-
square or Normal CUSUM control charts 
designed using standard ARL results.

*The Wald Test or GLRT can be used here.
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Monitoring Method
Case 1:  An Alternative Global Statistic

A weighted χ2 test can be used in place of the 
Wald test.

Wald = aTa  χν
2

Weighted  χ2 = aTWa τχν
2 ⇒ Γ(η/2,2τ)

W is a weight matrix where the weights can be 
chosen to emphasize possible clusters of most 
importance. 

~&
~&
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Monitoring Method
Case 1:  Control Charts for Local Statistics

Detect multi-level clustering
H0: βi = 0 – test appropriate coefficients  OR
H0: predicted λi = baseline λi for each cluster i.

Detect increases from baseline in individual areas
H0: predicted λi = baseline λi for each county i.

Monitor local statistics over time with Chi-square 
or Normal CUSUM control charts designed using 
standard ARL results.
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Monitoring Method
Case 2:  Data

Data is coming in at equal time intervals.  -- Same 
as Case 1

At each time we get a count or rate of incidence for 
each county.  -- Same as Case 1

Each observation is assumed to be independent.   
-- Same as Case 1

Current and past observations are used to 
estimate the incidence surface.  Observations are 
weighted using the EWMA weighting scheme.
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Monitoring Method
Case 2:  Surface Estimation

Regressors for Space
– Same as in Case 1

Regressor for Time
– Change in time of each observation and the current 

observation
– Motivation for this comes from the Taylor Series 

Expansion of a function  -- f(t) ≈ f(T) + (t – T)f’(T)
Regressors for Space and Time
– All space regressors are multiplied by the time 

regressor
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Monitoring Method
Case 2:  Surface Estimation

Poisson Regression Model:

STTSTTSS0 ][1e βδ×Ψ+βδ+βΨ+β=µ

SΨ

][ TS δ×Ψ
Tδ

are the wavelet function values over the region 
(Space Regressor Matrix)
are the changes in time from the current time 
(Time regressor)

are the products of the space and time 
regressors
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Monitoring Method
Case 2:  Global Statistics

Does the surface change over time?
H0: = 0

Does the mean incidence increase over time?
H0: βT = 0

Is there space-time interaction?
H0: βST = 0

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
β
β

ST

T

*Same test statistics for Case 1 can be used here.
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Monitoring Method
Case 2:  Local Statistics

Detect multi-level clustering
H0: βi = 0 – test appropriate change coefficients
OR
H0: predicted change in λi = 0 for each cluster i.

Detect relative mean increases in individual 
counties
H0: predicted change in λi = 0 for each county i.
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Monitoring Method
Case 2:  Control Charts

Similar control charts to those used in Case 1 
are used to monitor the global and local 
statistics.

There is autocorrelation present because past 
observations are used in the estimation 
process.

ARL performance must be determined by 
simulation to design chart.
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Monitoring Method
Further Work

Covariate information, such as population size 
of the county, needs to be incorporated by 
changing the values of the wavelet functions.

The wavelet values are changed so that the 
orthogonality is maintained with respect to the 
covariate.

Covariate information on age and gender can 
easily be added to the model.
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Monitoring Method
Further Work

Problem with number of counties not equal to a 
power of two can be solved in two ways:
– By assigning zero incidences to these squares at 

each time period
– Or possibly by leaving out the observations 

associated with these cells

Need to explore how weights of past 
observations influence performance
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