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Adaptation in Experimentation

Most industrial experimentation has a 
characteristic of “immediacy”
Each set of experimental runs supply a basis 
for deciding the next 
“What has been made clear by my industrial 
experience … there should be more studies of 
statistics from the dynamic point of view”

Box, G.E.P., 1999, “Statistics as a Catalyst to Learning by Scientific Method Part II –
A Discussion,” Journal of Quality Technology 31(1)16-29.



OFAT: A Starting Point for Investigation

Daniel, Cuthbert, 1973, “One-at-a-Time Plans”, Journal of the 
American Statistical Association, vol. 68, no. 342, pp. 353-360.

“Some scientists do their experimental work in single steps.  
They hope to learn something from each run … they see 
and react to data more rapidly …”
“…Such experiments are economical”
“…May give biased estimates”
“If he has in fact found out a good deal by his methods, it 
must be true that the effects are at least three or four times 
his average random error per trial.”
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Frey, D. D., and H. Wang, 2006, “Adaptive One-Factor-at-a-Time Experimentation and Expected Value 
of Improvement”, accepted to Technometrics.



A Simple Adaptive Version of OFAT
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If there is an apparent
improvement, retain the 
change

If the response gets worse, 
go back to the previous state 

Do an experiment  

Stop after every factor has 
been changed exactly once

Change 
one factor  



Mathematical Model – Adaptive Method
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Mathematical Model – Factor Effects

A model of the population of systems is:
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Definition – “Exploiting” Effects
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a physical effect (main effect or 
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Theory – The First Step

main
effects

two-factor interactions
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Frey, D. D., and H. Wang, 2006, “Adaptive One-Factor-at-a-Time Experimentation and Expected Value 
of Improvement”, accepted to Technometrics.



Theory – Second Step

main
effects

two-factor interactions
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Probability of Exploiting the First Two-Factor 
Interaction (n=7)
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Final Outcome (n=7)

Adaptive OFAT Resolution III Design
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Final Outcome (n=7)

Adaptive OFAT Resolution III Design
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Adaptive OFAT for Robust Design
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Again, run a resolution III on 
noise factors.  If there is an 
improvement, in transmitted 
variance, retain the change

If the response gets worse, 
go back to the previous state 

Run a resolution III
design on noise factors  

Stop after you’ve changed 
every factor once

Change 
one factor  
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A Hierarchical Probability Model
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effects are normally distributed
two classes – “active” and “inactive”

effect sparsity – a small fraction 
of all effects are “active”

Adapted from Chipman, H., M. Hamada, and C. F. J. Wu, 2001, “A Bayesian Variable Selection Approach for 
Analyzing Designed Experiments with Complex Aliasing”, Technometrics 39(4)372-381.
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Fitting the Model to Data

Collect published full factorial data on various 
engineering systems 

– 113 sets collected from published experiments (used for fit)
– 90 sets collected from Ford Motor Company (a check)

Lenth method used to sort “active” and “inactive”
effects
Probabilities in the model estimated based on 
frequencies in the data sets

Li, X. and D. D. Frey, 2005, “Regularities in Data from Factorial Experiments,”
accepted to Complexity.



Results of Model-Based Evaluation

Frey, D. D., and X. Li, 2006, “Using Hierarchical Probability Models to Evaluate Robust Parameter Design Methods,”
currently being revised. 



Sheet Metal Spinning -- Model

Polynomial 
equation as derived 
from data by Kunert
(2006)
Control factors A-F
Noise factors m,n,o
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Kunert, J., Auer, C., Erdbrugge, M., and Gobel, R., 2006, “An 
Experiment to Compare the Combined Array and the Product Array for 
Robust Parameter Design,” accepted to Journal of Quality Technology.



Sheet Metal Spinning -- Results
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26-3x23-1

aOFATx23-1 informed
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Frey, D. D., 
N. Sudarsanam, and 
J. B. Persons, 2006, 
“An Adaptive One-
Factor-At-A-Time 
Method for Robust 
Parameter Design: 
Comparison with 
Crossed Arrays via 
Case Studies,”
accepted to ASME 
Design Engineering 
Technical 
Conferences.



Operational Amplifier -- Model

Ebers-Moll model 
of the transistors
Equations 
implemented in 
closed form
Matlab solver
Same 21 noise 
factors as 
presented in 
Phadke (1989)

Phadke, Madhav S., 1989, Quality Engineering Using Robust Design, 
Prentice Hall, Englewood Cliffs, NJ.



Operational Amplifier -- Results
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At low error, both crossed arrays and aOFAT always exploited the 
large interaction between RPEM and SIENP 



Paper Airplane – “Model”

The data itself 
as tabulated 
from a 34x23-1

Experimental 
error added 
using a random 
number 
generator



Paper Airplane – Results

For aOFAT random, probabilities are, 
~98% to exploit the largest control by noise interaction
>80%  to exploit the largest control by control interaction 
>60% to exploit the largest control by control by noise interaction 



Freight Transportation – Model

“System dynamics” model in 
AnyLogic©, version 5.2
Control variables = gas tax, 
truck weight limit, product 
tax and carbon emission tax 
levels
Noise variables = fuel 
efficiency of the truck, the 
landfill price, and truck 
emissions
Multiple output variables 
rolled into a single objective 
function 

Glazner, C., and Sgouridis, S., 2005, “Optimizing Freight Transportation Policies for 
Sustainability”, MIT Sloan School of Management. 
http://www.xjtek.com/files/papers/freighttransportation2005.pdf



Freight Transportation – Results
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Summary of Case Study Results

 Method used
pk

IIIaOFAT −×2    
 

 

Fractional 
array pk

III
−× 2  informed  random  

Low ε 4.3 6.1 5.1 sheet metal 
spinning 

S/Nmax = 7.4 High ε 2.7 2.7 2.4 
Low ε 8.5 8.5 8.4 op amp 

S/Nmax = 8.6 High ε 8.4 7.6 7.5 
Low ε 1.6 3.0 2.5 paper airplane 

S/Nmax = 3.7 High ε 1.5 2.5 1.9 
Low ε 3.1 3.3 3.3 freight transport 

S/Nmax = 3.3 High ε 2.9 2.8 2.8 
Low ε 4.4 5.2 4.8 

Mean of four cases High ε 3.9 3.9 3.7 



Conclusions: aOFAT applied to RPD

Adaptive OFAT
As long as experimental 
error is not much larger than 
main effects
Exploits main effects
Exploits 2-factor interactions, 
especially the largest ones
Provides about 80% of the 
maximum possible 
improvement on average 

Adaptive OFAT X Noise Array
As long as experimental error 
is not much larger than 
relevant effects
Exploits CXN interactions
Exploits CXCXN interactions, 
especially the largest ones
Provides about 80% of the 
maximum possible 
improvement on average 
Works even better with an 
informed starting point

• Generally better results than alternatives with similar resource demands
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“The factorial design is ideally suited for experiments whose 
purpose is to map a function in a pre-assigned range.”

“…however, the factorial design has certain deficiencies … It 
devotes observations to exploring regions that may be of no 
interest.”

“…These deficiencies of the factorial design suggest that an 
efficient design for the present purpose ought to be sequential; 
that is, ought to adjust the experimental program at each stage in 
light of the results of prior stages.”

Friedman, Milton, and L. J. Savage, 1947, “Planning Experiments 
Seeking Maxima”, in Techniques of Statistical Analysis, pp. 365-372.

Friedman and Savage on Adaptation



TITLE: ADAPTIVE EXPERIMENTATION, EXPECTED VALUE OF IMPROVEMENT, AND ROBUST 
DESIGN

ABSTRACT:
This seminar will present research into adaptive experimentation as a means for making improvements in 
design of engineering systems. A simple method for experimentation is described entitled adaptive one-
factor-at-a-time. A mathematical model is proposed and theorems are presented concerning the expected 
value of the improvement provided and the probability that factor effects will be exploited. It is shown that 
adaptive one-factor-at-a-time provides a large fraction of the potential improvements if experimental error 
is not large compared to the main effects and that this degree of improvement is more than that provided 
by resolution III fractional factorial designs if interactions are not small compared to main effects. The 
theorems also establish that the method exploits two-factor interactions when they are large and exploits 
main effects if interactions are small. A case study on design of electric powered aircraft supports these 
results. These results are then extended to robust parameter design. A method is proposed for evaluating 
the effectiveness of robust parameter design methods. The method employs a hierarchical probability 
model to express assumptions about effect sparsity, hierarchy, and inheritance. Using this approach, it is 
shown that adaptive one-factor-a-a-time crossed with a resolution III array performs well in comparison to 
alternative methods in terms of the improvements attained and the costs incurred.


