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Introduction

• Modern Methods in Statistics offer 
accurate and efficient ways of processing 
data

• Many researchers do not realize how 
processing data can affect interpretation

• Different ways of processing data can 
return different results

• Modern methods are firmly grounded
• Gives more confidence in interpretation



Outline of Topics

• Overview of Modern Regression Methods
• Applications of Modern Linear Regression 

to Spectral Analysis
• Overview of Modern Clustering Methods
• Applications of Modern Clustering 

Methods to Astronomy



Linear Regression

• Many phenomena show a relationship 
between quantities

• Simple linear regression

• Multiple linear regression

• Statistical Modeling finds best equation 



Statistical Modeling

• Classical methods focus on reducing the 
Sum of Squared Error

• Works well for Simple Regression
• This strategy can cause problems in 

Multiple Regression
• Ambiguity in model selection, overfitting, 

ad hoc selection methods



Scored Regression

• Instead of judging competing models 
based on Reduction of SSE or F-test

• Assigns a score to different combinations 
of model variables

• Overcomes subjective thresholds of 
classical methods

• This method is derived from statistical 
theory, gives confidence in results



AIC and ICOMP

• Two examples of scoring functions used in 
regression

• AIC was the original scoring function

• ICOMP is a more modern scoring function 
that better models interactions of variables



Using scored regression

• Compute regression parameters for 
different combinations of models

• Use the scoring functions (AIC or ICOMP) 
to compute a score for these combinations

• The model combination that achieves the 
lowest score is the best



Regression in Spectroscopy
• Since the 1960’s, researchers have been using 

regression algorithms for molecular parameters
• Expand Hamiltonian in power series
• v is vibration quan. num., J is rotation quan. 

num. , K is z component of rotation quan. num.
• Eigenvalues of angular momentum operators 
• Regressor x terms are functions of v, J and K 

and changes in these terms
• Response y values are the transition 

frequencies



Historical Stepwise Analysis

• Under the stepwise scheme, the 
researcher initializes the regression 
algorithm with a model containing terms 
that they believe are important

• The algorithm successively adds and 
deletes variables according to F-test 
thresholds

• The algorithm also deletes outliers until no 
change occurs



Information Scored Analysis

• Structure of Information scored method is 
analogous to the structure of stepwise 
process

• Algorithm starts by forcing lower-order 
terms and assigns scores to different 
combinations of higher-order terms

• The combination of variables that achieves 
the minimum information score is best

• Treats outliers in analogous way



Advantages of this Method

• Overcomes arbitrary F-test values for 
variable selection

• Overcomes ad hoc assumptions of 
stepwise process

• Closely connected with theory of 
regression

• Achieves optimization in variable selection 
while obeying power series requirements



Some examples of analysis

• I elected to process some historical data 
sets because these authors clearly stated 
how they analyzed the data and what 
model they used

• Started with low variable data
• Later analyzed data with more variables
• Theory says low variable data should 

agree with stepwise analysis
• More disagreement with more variables



Boyd/Kurlat:               Low Variable 



Kurlat: 3rd 



Kurlat: 3rd



Modern High Resolution Data

• For higher resolution data, the regression 
analysis would be the first step in an iterative 
process that includes perturbation analysis

• We compared an initial fit of our data with the 
final results from Guelachvili et al. (1984)

• Original Authors sd=
• My unweighted sd=             
• My weighted sd=
• No hand selection, automatically select points



Guelachvili High Res. 



Summary of Scored Regression

• In low variable limit, modern method 
agrees with classical method

• As more variables are added, more 
disagreement appears

• My method is on firm theoretical grounds
• I think that scored regression has more 

general application in physics: calibration 
studies, intensity studies, etc.



Cluster Analysis

• Tries to find structure in data
• Traditional methods use the K-means 

algorithm and the Expectation-
Maximization (EM) algorithm

• Both of these traditional methods use 
initial seed values and iterative estimation

• Strong dependence on initial seed values 
and little optimization properties



Genetic Algorithms in Clustering

• I implemented Genetic Algorithm (GA) 
based methods for cluster analysis

• Does not rely on seed values
• Has proven optimization properties based 

on Markov Chain behavior
• My methods can more accurately identify 

complex data structures than K-means
• Need accurate parameter estimates in 

order to best use information scoring 



GARM

• Genetic Algorithm with Regularized 
Mahalanobis

• New Cluster partition method for 
hyperellipsoidal clustering

• Uses String-of-Group numbers 
representation of GA population

• New GA operations drastically reduce 
convergence over traditional GA methods



How does GARM work?

• Initialize population of cluster assignments
• Biased mutation operation – assigns data 

points to clusters with probability 
proportional to Regularized Mahalanobis
Distance (RMD)

• Genetic Mahalanobis operation – assigns 
points with closest RMD

• Fitness function is sum of RMD
• Reproduction proportional to fitness 



Example: 80.2% vs. 100% 
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Convergence: 1000’s vs. 10’s
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Example: 48.8% vs. 93.8%
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More Fast Convergence
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Mixture Modeling

• Mixture Modeling classifies data according 
to probabilities arising from defined 
distributions

• Most common is normal mixture models

• Maximize Posterior Probabilities of group 
membership



Traditionally use EM algorithm

• Traditional EM algorithm starts cluster 
assignments with K-means initialization

• Iteratively recomputes log-likelihood of 
mixture model and cluster assignments

• Continues this process until the change in 
the log-likelihood value is small



Traditional EM algorithm

• Authors admit this is a local maximizer
• Final results depend strongly on starting 

values
• Parameter space of cluster values 

generally highly nonlinear with many local 
maxima

• In data with complex covariance structure, 
it may be difficult for traditional EM 
algorithm to find global maximum



Genetic Expectation Maximization

• I introduced the GEM algorithm as a new 
way to do mixture model cluster analysis

• Analogous string-of-numbers population 
and GA operations as GARM

• Biased mutation assigns values according 
to posterior probabilities

• Posterior Probability Operation
• Fitness is the log-likelihood of mixture
• Reproduction proportional to fitness



Advantages of GEM

• Does not show strong dependence on 
initial values

• Relatively fast convergence: traditional 
algorithm can take 1000’s of iterations

• Optimization based on Markov Chain 
properties

• Better able to accurately model complex 
covariance structure



Different initializations: 
GARM: 97.8% and GKM: 98.2% 
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Convergence of Log-Likelihoods 
with GARM and GKM initializations
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Different initializations: 
GARM: 92.4% and GKM: 92.4%
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Convergence of Log-Likelihoods 
with GARM and GKM initializations
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Use GEM in Information Scored
Mixture Model analysis

• We can derive information scoring 
functions AIC and ICOMP in mixture 
modeling situation

• Depends on number of parameters
• Need accurate estimations of means and 

covariance parameters to use scoring
• Use GEM to calculate mixture components
• Assign information scores to components
• Components with minimum score is best



Test Data: 5 components
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AIC and ICOMP scores
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Test Data: 3 components

−4 −3 −2 −1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

2.5
Bivariate Plot of Original Data

Variable 1

V
ar

ia
bl

e 
2



AIC and ICOMP scores
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GA Cluster Analysis Summary

• GARM type operations improve 
convergence and accuracy of analysis

• GEM finds global maximum in log-
likelihood value with little dependence on 
initial conditions

• GEM returns accurate estimates of cluster 
means and covariances

• Uses accurate parameter estimates of 
GEM in information scored cluster analysis



Mixture Models in Astronomy

• I used GEM with information scoring to 
analyze some astronomical data

• Astronomy data continually grows
• Need automated ways of classifying 

increasingly multivariate data
• Paper from 2004 states that currently over 

100 Tb of data warehoused in astronomy
• Human Genome ~ 1 Gb
• Library of Congress ~ 20 Tb



Stellar Kinematic Data

• Soubiran (1993) studied the proper motion 
of stars in our Galaxy

• Data compiled from photographic plates of 
7 square degrees near globular cluster M3

• Plates taken over 40 year time span
• Proper Motion: V component towards 

galactic pole
• U component in rotational component of 

galactic motion 



How many Stellar Populations?

• The historical paradigm is that galaxy has 
two populations of stars

• Disk and Halo
• Differ in ages, motions, metalicities
• Since 1990’s, evidence of three 

populations
• Thin disk, Thick disk, Halo
• How can we judge which model is best?



Plot of data set 
No Obvious Structure
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GEM Result with 2 components
AIC = 51024.4 , ICOMP = 51044.2
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GEM Result with 3 components
AIC = 51007.6 , ICOMP = 51025.5
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Scores indicate 3 components
• Minimum ICOMP and 

AIC scores indicate 
that 3 components is 
preferred over 2

• Agrees with Bensmail
et al. (1997) using 
Bayes factors

• Further evidence to 
support 3 stellar 
populations 
hypothesis 

−500 −400 −300 −200 −100 0 100 200 300 400 500
−400

−350

−300

−250

−200

−150

−100

−50

0

50

100
Bivariate Plot of Classification Results of GEM with 3 Mixture Components

U Component (km/s)

V
 C

om
po

ne
nt

 (
km

/s
)



Data that tests classification

• Zhang and Zhao (2003, 2004) compiled 
data that can test classification algorithms

• Compiled data from USNO, 2MASS 
Infrared, and Rosat X-ray RASS catalogs

• Data are 10 dimensional, with parameters 
describing the intensities in different bands

• Analogous to Optical Color Index (B – V) 
except that covers visible, IR, and X-Ray 



Classification Methods

• Zhang and Zhao used artificial intelligence 
algorithms 

• Combined PCA preprocessing with 
Backprop NN, Kohonen NN, SVM, LVQ

• Trained NN’s on half of data, tested 
classification on other half

• I applied scored GEM mixture modeling
• No need for training
• Can identify covariance structure of data



Example: 
Galaxy Subset: 173 points

min AIC = 12 , min ICOMP = 3
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Classification in Astronomy
Spectral Telescope 
LAMOST in China



Conclusion

• This work represents the first time that 
information scoring methods have been 
applied to physics and astronomy data

• I think that information scored regression 
can have wider application in physics

• GA based log-likelihood analysis can be 
extended to mixture of kernels (already did 
calculations) and nonlinear clustering



Questions? Comments?

• This work is in my Ph.D. dissertation
• Online at University of Tennessee library 

website
• Currently drafting publications
• Contact me: jwicker@utk.edu or 

jewicker@gmail.com
• I am looking for opportunities to 

collaborate and apply this research

mailto:jwicker@utk.edu
mailto:jewicker@gmail.com
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