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Choice experiment in marketing

Which of the two race bicycles would you prefer if the
options only differ with respect to the attributes shown?

e e M

Carbon frame Aluminum frame

Classic frame Sloping frame
Straight fork Bent fork
Bontrager Race Lite wheels Shimano WH-7701 wheels
Shimano Ultegra groupset Shimano Dura-Ace groupset
| — > Choice set
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J

Which of the two race bicycles would you prefer if the
options only differ with respect to the attributes shown?
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Aluminum frame Carbon frame

Sloping frame Classic frame
Straight fork Bent fork
Shimano WH-7701 wheels Mavic Ksyrium SL wheels
Shimano Tiagra groupset Campagnolo Record groupset

4
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m Respondents evaluate several sets of
(hypothetical) products or services

m More specifically, respondents indicate the
alternative they like most in each choice set
=> 0/1 outcomes

m [hese alternatives are called profiles

m [he profiles are described in terms of
(categorical) attributes

m Choice sets typically consist of two, three or four
profiles

JRC 2006, June 7-9, Knoxville 4
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m 15 choice sets of 2 profiles

m 5 attributes:
material of the frame (carbon, aluminum)
type of frame (classic, sloping)
type of fork (straight, bent)
type of wheels (3 levels)
type of groupset (5 levels)

2x2x%x2x%x3x5=120 possible profiles
which 15 x 2 = 30 profiles will be used?
how will we partition them in sets of two?

goals:

estimate the value respondents attach to the levels of each
attribute

predict respondents’ choices
JRC 2006, June 7-9, Knoxville 5
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m multinomial logit model
m based on the random utilities model

/
U, =X B+¢€,

where x;; represents the attribute levels and B is
the set of parameter values

m probability of choosing alternative j in choice set s

(option j chosen] - guF
s =

in choice set s ’ 1exis3
t=

JRC 2006, June 7-9, Knoxville 6



Estimation-based design criteria

m seek to minimize variances of estimators

B minimize a function of the variance-covariance
matrix of the estimators:

var(X,B) (Zx (P, —p.p.) X, y
M~ (X,B)

m minimize the trace: A-optimality criterion

m minimize the determinant: D-optimality criterion
= equivalent to maximizing the determinant of
the information matrix M

JRC 2006, June 7-9, Knoxville 7



Prediction-based design criteria

m seek to minimize variances of predicted
probabilities

m minimize the maximum prediction variance:
G-optimality criterion

m minimize the average prediction variance:
V-optimality criterion

m talking about choice probabilities requires
choice sets to be specified
= we list all possible choice sets of size J

120
e.g. :( 5 j: 7,140 choice sets or 14,280 profiles

JRC 2006, June 7-9, Knoxville 8



Prediction-based design criteria

m mathematically:
G =maxc’( jq) "(X,B)e(x,, )

Xjg€X
V:IC,(qu T(X.B)e(x,)dx,,
y4

ap;, (X,,.B J
with ¢(x, ) =—= (8qu ) = Pjq (qu _;pthtqj and

x={%i> X, J|Ja=1...Q}, all Q possible
choice sets of size J

JRC 2006, June 7-9, Knoxville 9
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S
M(X.B) =2 X; (P, (B)-p.(B)p(B)
T 1 [ ]
Bayesian optimal designs:
O construct a prior distribution for the parameters

) X

S

O find design that performs best on average
O Sandor & Wedel (2001, 2002, 2005)

JRC 2006, June 7-9, Knoxville 10
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Computational results
(Kessels, Goos and Vandebroek 2006)

m design problem involves
2 attributes with 3 levels + 1 attribute with 2 levels
3 x 3 x 2 =18 possible profiles

m design sizes

12 choice sets of 2 profiles
Q= [128j =153 choice sets or 306 profiles

8 choice sets of 3 profiles
Q= (1??} =816 choice sets or 2,448 profiles

JRC 2006, June 7-9, Knoxville 11
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Computational results
(Kessels, Goos and Vandebroek 2006)

m Monte Carlo sampling
() =N(B | Bo.ls) with B, =[~1,0, 1,0, 1]

&{> 1000 draws

m modified Fedorov algorithm
exchange of profiles from the candidate set
200 tries or random starting designs

Monte Carlo modified Fedorov algorithm (MCMF)

JRC 2006, June 7-9, Knoxville 12



Choice sets with
two alternatives

Choice sets with
three alternatives

Optimal designs

(Kessels, Goos and Vandebroek 2006)

D A G Vv

CS | Alt | Attributes | Attributes | Attributes | Attributes
1 2 3|1 2 3[1 2 3|1 2 3

111 ]2 3 3 2 0 3 1 2 2 2
|1 2 O 3 1 2 2 1 1 1

2 1|2 2 2(2 3 [\|3 2 2 1 2
1 1 101 2 0 2 3 1 2 1
31 (1 2 @12 1 @21 2 [A\[1 2 2
|3 1 (z) 1 2 2 1 \1[3 1 1
1103 1]|[A\B\ 2|2 2 1|1 [2\ 2
{2 (1] 12113 113 1 2|3 [1] 1

m {1 \2) 21\1/\o/ 111 3 1|2 \2) 1

2 |1 [\ 1 1[[A\N[\N\B\\[2 3 2 [
N PRI EIE i) 1 3 |1

m \1) 3 2 |\1/\2/\1J|\3/ \u 2 1 \1
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Computing times
(Kessels, Goos and Vandebroek 2006)

m for 1 try of MCMF

m performed in the SAS procedure IML

Design # Alternatives
criterion 2 3
D 00h:05m |00h:05m
A 00h:05m |00h:05m
G 02h:30m [ 11h:00m
vV 02h:30m | 11h:00m

KATHOLIEKE UMIVERSITEIT

Computation of Bayesian G- and V-optimal designs

Is practically infeasible using MCMF

JRC 2006, June 7-9, Knoxville
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Improved approach

(Kessels, Jones, Goos and Vandebroek 20006)

m Huge reduction in computing times and better
designs

m As a result of using

1. a small designed sample of prior parameters
2. a coordinate-exchange algorithm

3. updates of the Cholesky decomposition of the
information matrix

4. a handy formula for the computation of the
Bayesian V-optimality criterion

Adaptive algorithm

JRC 2006, June 7-9, Knoxville 15



Improved results

(Kessels, Jones, Goos and Vandebroek 20006)

m Huge reduction in computing times
for 1 try of the adaptive algorithm

performed in MATLAB 7

KATHOLIEKE UMIVERSITEIT

=> comparison with computing times of MCMF in
MATLAB 7

Design
criterion

# Alternatives

2

3

4

D

00:00:03

00:00:04

00:00:05

00:00:03

00:00:04

00:00:05

00:00:07

00:00:32

00:04:23

<|®|>

00:00:03

00:00:05

00:00:08

JRC 2006, June 7-9, Knoxville

Design # Alternatives

criterion 2 3 4
D 00:08:00 [00:08:00 —
A 00:08:00 {00:08:00 —
G  |03:00:00 [12:00:00 | —
vV |03:00:00|12:00:00 | —
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Improved results

(Kessels, Jones, Goos and Vandebroek 20006)

CONSEQUENCE:
The adaptive algorithm is computationally more effective
in time than MCMF

—
—

o
©
©
o
©
©

> 0.98 > 0.98
[ C
2 o
(@] o
£ 0.97 £ 0.97
% %
A >
3 0.96  0.96/
: :
2 2
i 0.95- W 0.95/

o
©
g
o
(o]
g

- Adaptive algorithm - Adaptive algorithm
—= Monte Carlo modified Fedorov —— Monte Carlo modified Fedorov

co il cov el P 1 L
0.93 0 1 2 6 7 8 6 7 8

10° 10'  10° 10° 10* 10° 10° 100 10 10° 10 10° 10° 10° 10° 10° 100 10
Number of seconds Number of seconds
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Improved results

(Kessels, Jones, Goos and Vandebroek 20006)

from 1000 tries

Optimal 2 alternatives 3 alternatives 4 alternatives
design | Adaptive| MCMF | Adaptive | MCMF | Adaptive| MCMF
D 0.73024 | 0.73024 | 0.75362 | 0.76617 | 0.86782 —

A 6.55212 | 6.60563 | 5.97903 | 6.02261 | 6.57135 —
G 0.49887 | 0.51997 | 0.51051 | 0.51843 | 0.60494 —
Vv 0.07184 | 0.07219 | 0.06267 | 0.06285 | 0.05728 —

JRC 2006, June 7-9, Knoxville

m Better or tied D-, A-, G- and V-optimal designs
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Adaptive algorithm

(Kessels, Jones, Goos and Vandebroek 20006)

m Computation of the Bayesian designs produced
by 1000 tries

based on 20 designed prior parameters instead of
1000 random ones

m Re-evaluation of the Bayesian designs from
1000 tries and selection of the optimal design
based on 1000 random prior parameters

Computational savings of up to 98% within
each try of the algorithm!

JRC 2006, June 7-9, Knoxville 19




B
Why an adaptive algorithm?

(Kessels, Jones, Goos and Vandebroek 2006)

V-criterion values using 1000 random priors

0.075

Improvements in 1 try

0.105¢

0.095¢

0.085

+
+
+
.H-
’.t +
by r=0.99
+
+
0.065 0.075 0.085 0.095 0.105

V-criterion values using 20 designed priors

criterion values using 1000 random priors

Vv

0.082-

0.079r

0.076-

0.073r

Designs from 30 tries

+
r=0.83
+ +
+
+
+
+
+ o4+
+
+ + +
T+ o+
O] +o4*
-
0.064 0.068 0.072

V-criterion values using 20 designed priors

JRC 2006, June 7-9, Knoxville
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Designed prior parameters

(Kessels, Jones, Goos and Vandebroek 20006)

m spherically symmetric and with (near) constant
separation from each other around the prior
mean at a distance of 2 units (radius = 20)

m = minimum potential designs or space filling
designs, created in JMP 6

let d_; be the distance between points e and f
minimize £, =" (d} +1/d,;)

pot
with d # the energy in a spring when you pull it and
1/d,;the energy between two like charged particles

JRC 2006, June 7-9, Knoxville 21
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Three equally spaced points on the
circumference of a circle

(Kessels, Jones, Goos and Vandebroek 2006)

JRC 2006, June 7-9, Knoxville 22
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B N
12 equally spaced points on the surface
of a sphere
(Kessels, Jones, Goos and Vandebroek 2006)
Minimum | Nearest
Run X1 X2 X3 Distance Paoint Radius
110231845 |-0.57289 (0.786146 |0.52572 810.999984
2(-069986 -0.09182 [0.708348 052572 11 (0.999995
31-0.23184 |0.572899 |-0.78614 052572 12 |0.999995
410557661 -0.80912 [-0.18524 (052572 510.999991
51-0.46192 |-0.88486 |0.06024910.52572 410.999996
6(-055766 (0809128 [0.185242 1052572 810.999989
710949872 [0.030723 10311119 10.52572 410.999996
810172680 |0.474046 |(0.863401 J0.52572 1 1
910461922 |0.884865 |-0.06024 |0.52572 6|0.999988
10 (-0.17267 |-047404 |-0.86339 052572 12 (0.999994
11 (-0.94986 |-0.03072 |(-0.31111 |0.52572 2|0.998991
12 |0.699855 |0.091823 |-0.70835 |0.52572 310.999989

JRC 2006, June 7-9, Knoxville

23



0.105

o
o
<
o

V-criterion values using 1000 random priors
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UVEN
Radius of 20
(Kessels, Jones, Goos and Vandebroek 2006)
Comparison to radii of 10 and 30
‘ 1
+
0.95
T + 5
+ :g 0.9
b
" :
T ¥ 085/
t : i 5
% + 0.8
— Radius =1
—— Radius = 2
1 2 3 0-7% 50 100 150 200 250
Radial distance of each point from the prior mean Number of tries
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Coordinate-exchange algorithm

(Kessels, Jones, Goos and Vandebroek 20006)

m greedy profile exchange algorithm: instead of
possibly changing every coordinate/attribute
level of a profile, one only changes one

m candidate-set-free algorithm

m very fast: reductions in computing time increase
with the dimensions of the design problem
(attributes, attribute levels, design profiles)

m |ess effective per try than MF (but not in time!): it
takes more tries to find the global optimum

m originally developed by Meyer and Nachtsheim
(1995)

JRC 2006, June 7-9, Knoxville 25



Coordinate-exchange algorithm

(Kessels, Jones, Goos and Vandebroek 20006)

CONSEQUENCE:
The adaptive algorithm is computationally less effective
per number of tries than MCMF

—
—

0.99r 0.99
> 0.987 > 0.98+
C C
Q 0
(&} O
£ 0.97r £ 0.97r
? ¢
()] >
 0.96 2096
O O
g g
x X
w 0.95- w 0.95
0.94¢ g 0.94
- Adaptive algorithm - Adaptive algorithm
=—= Monte Carlo modified Fedorov == Monte Carlo modified Fedorov
O'930 50 100 150 200 0'930 50 100 150 200
Number of tries Number of tries
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Updating the Cholesky decomposition of
the information matrix M

(Kessels, Jones, Goos and Vandebroek 2006)
m feasible because M is symmetric
as a result of symmetric information matrices M,
=X (P, —p.p. )X, =X.C_X_, with C;, symmetric
m by definition:|M=L"L|with L the upper triangular
matrix named the Cholesky factor

" M'=(LL) =[M'=L, L
m updating L: changing a profile in X

deletion of the current profile: L1
iInsertion of a new profile: L2

JRC 2006, June 7-9, Knoxville 27
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D- and A-optimality criteria in terms of
the Cholesky factor

(Kessels, Jones, Goos and Vandebroek 2006)

D=(det(M))"" A=tr(M)
_1/ det )Hk _tr(L/nvL/nv)
1/ det (L det(L))Hk =SS(elementsinL, )

— 1/ (prod( dlag(L)))Z/k

JRC 2006, June 7-9, Knoxville 28



V- and G-optimality criteria in terms of
the Cholesky factor

(Kessels, Jones, Goos and Vandebroek 2006)

m V: computational short cut
— prediction variance ¢’(x, )M 'c(x,, ) = scalar

— c'(qu)M_1C(qu):tr(c,(qu)M_1c( fq))
- tr(c’(qu)M‘1c(qu))=tr(c(qu)c'( M )
— letW, = ( ) ( ,q)jwzizﬂzqﬂ

- V= j X, )dx, tr(WL L)

inv—inv

m G: trick does not work since all the individual
variances have to be computed to find the worst
variance

JRC 2006, June 7-9, Knoxville 29



Large choice designs

(Kessels, Jones, Goos and Vandebroek 20006)

m Easy to compute using the adaptive algorithm

m Race bicycle example: 15 choice sets of size 2
5 attributes: 23 x 3 x 5

extension: 10 choice sets of size 3

Computing times per try
Design # Alternatives

criterion 2 3
D 00:00:08 {00:00:14

> | Vv _ [00:00:1500:04:05
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