

Computer Experiments and Model Uncertainty Quantification in Engineering Design

Dr. Wei Chen Associate Professor

Integrated DEsign Automation Laboratory (IDEAL)

Department of Mechanical Engineering Northwestern University

weichen@northwestern.edu, (847)491-7019

Http://ideal.mech.northwestern.edu//

Integrated DEsign Automation Laboratory

JRC June 8, 2006

Metamodeling for Simulation Based Design under Uncertainty

Research Developments

- Analytical uncertainty propagation (UP) and Statistical Sensitivity Analysis (SSA)
- Quantification of model (interpolation) uncertainty
- Sampling of computer experiments

Statistical Sensitivity Analysis (SSA)

 X_1

 X_2

SSA study of how the variation in the output of a model can be apportioned, qualitatively or quantitatively, to different sources of variation (Saltelli, et al. 2000)

 $y=f(\mathbf{x})$

- Investigate resources for uncertainty reduction
- Study the interaction of control & noise variables

Variance-Based SSA Method

 S_2

S₁₂₃

S₁₃

Variance-based methods investigate the impact of uncertainty in a random variable on the variance of a random response, derived from the concept of variance decomposition. S_3 S₂₃

Computational Challenge of SSA

ANOVA Decomposition

$$\phi_i(x_i) = \int f(\mathbf{x}) \prod_{j \neq i} [p_j(x_j) d\mathbf{x}_j] - f_0 \qquad f_0 = \int f(\mathbf{x}) \prod_{i=1}^n [p_i(x_i) dx_i]$$

Two-Variable Interaction Effect

$$\phi_{i_1i_2}(x_{i_1}, x_{i_2}) = \int f(\mathbf{x}) \prod_{j \neq i_1, i_2} [p_j(x_j)dx_j] - \phi_{i_1}(x_{i_1}) - \phi_{i_2}(x_{i_2}) - f_0$$

Separable Variances

$$V = Var\{f(\mathbf{X})\} = \int f^{2}(\mathbf{x}) p(\mathbf{x}) d\mathbf{x} - f_{0}^{2}$$
$$V_{i_{1}...i_{s}} = Var\{\phi_{i_{1}...i_{s}}(x_{i_{1}},...,x_{i_{s}})\} = \int \phi_{i_{1}...i_{s}}^{2}(x_{i_{1}},...,x_{i_{s}}) \prod_{j=i_{1}}^{i_{s}} [p_{j}(x_{j}) dx_{j}]$$

Analytical SSA and UA

- Subset Decomposition $V = \sum \widehat{V}_{\mathbf{U}_{i}} + \sum_{i_{1} < i_{2}} \widehat{V}_{\mathbf{U}_{i_{1}}\mathbf{U}_{i_{2}}} + \dots + \widehat{V}_{\mathbf{U}_{1}\dots\mathbf{U}_{T}}$ $\widehat{\phi}_{\mathbf{U}_{i_{1}}\dots\mathbf{U}_{i_{s}}}(\mathbf{x}_{\mathbf{U}_{i_{1}}},\dots,\mathbf{x}_{\mathbf{U}_{i_{s}}}) = \sum_{l=1}^{s} \sum_{i_{1}\dots\dotsi_{s}} \sum_{i_{l} \in (i_{1}\dots,i_{s})} (-1)^{s-l} \widehat{\phi}_{\mathbf{U}_{j_{1}}+\dots\mathbf{U}_{j_{l}}}(\mathbf{x}_{\mathbf{U}_{j_{1}}},\dots,\mathbf{x}_{\mathbf{U}_{j_{l}}})$
- Transform multivariate to univariate integration for tensor product basis functions

Chen, W., Jin, R., and Sudjianto, A., 2006, "Analytical Global Sensitivity Analysis and Uncertainty Propagation for Robust Design", *Journal of Quality Technology, in press.* Let D for the set of design variables, R for the set of noise variables

$$V = \widehat{V}_{\mathbf{D}} + \widehat{V}_{\mathbf{R}} + \widehat{V}_{\mathbf{D}\mathbf{R}}$$

- Variance reduction of eliminating uncertainty $\Delta \sigma_{yi}^{2} = Var[f(\mathbf{X})|\mathbf{x}_{\mathbf{D}})] - Var[f(\mathbf{X})|\mathbf{x}_{\mathbf{D}}, x_{i})]$
- Sensitivity Index for uncertainty reduction $S_i^{\ u} = \overline{\Delta \sigma_{yi}^{\ 2}} / V = \widehat{S}_{\mathbf{D}+i} - \widehat{S}_{\mathbf{D}} = S_i + \widehat{S}_{i\mathbf{D}}$

Tensor Product Basis Functions

$$f(\mathbf{x}) = a_0 + \sum_{i=1}^{N_b} a_i B_i(\mathbf{x}) = a_0 + \sum_{i=1}^{N_b} [a_i \prod_{l=1}^{M} h_{il}(x_l)]$$

$$f(\mathbf{x}) = x_1^2 + x_1 \sin(x_2)$$
Two tensor-
product basis
$$f(\mathbf{x}) = B_1(\mathbf{x}) + B_2(\mathbf{x})$$
functions
$$B_1(\mathbf{x}) = h_{11}(x_1)h_{12}(x_2)$$

$$B_2(\mathbf{x}) = h_{21}(x_1)h_{22}(x_2)$$
Four univariate
$$h_{11}(x_1) = x_1^2, \quad h_{21}(x_1) = x_1,$$

$$h_{21}(x_2) = \sin(x_2).$$

Generalized Analytical Formulations

Subset Main Variance

$$\begin{split} \widehat{V}_{U} &= \int \left\{ \sum_{i=1}^{N_{b}} \left[a_{i} \prod_{l \notin U} C_{1,il} \prod_{l \in U} h_{il}(x_{l}) \right] - \sum_{i=1}^{N_{b}} \left(a_{i} \prod_{l=1}^{M} C_{1,il} \right) \right\}^{2} \prod_{l \in U} \left[p_{l}(x_{l}) dx_{l} \right] \\ &= \int \left\{ \sum_{i=1}^{N_{b}} \left[a_{i} \prod_{l \notin U} C_{1,il} \prod_{l \in U} h_{il}(x_{l}) \right] \right\}^{2} \prod_{l \in U} \left[p_{l}(x_{l}) dx_{l} \right] - \left[\sum_{i=1}^{N_{b}} \left(a_{i} \prod_{l=1}^{M} C_{1,il} \right) \right]^{2} \\ &= \sum_{i_{1}=1}^{N_{b}} \sum_{i_{2}=1}^{N_{b}} \left\{ a_{i_{1}} a_{i_{2}} \prod_{l \notin U} \left(C_{1,i_{l}l} C_{1,i_{2}l} \right) \prod_{l \in U} \int h_{i_{l}l}(x_{l}) h_{i_{2}l}(x_{l}) dx_{l} \right\} - \sum_{i_{1}=1}^{N_{b}} \sum_{i_{2}=1}^{N_{b}} \left[a_{i_{1}} a_{i_{2}} \prod_{l=1}^{M} \left(C_{1,i_{l}l} C_{1,i_{2}l} \right) \prod_{l \in U} \int h_{i_{l}l}(x_{l}) h_{i_{2}l}(x_{l}) dx_{l} \right\} - \sum_{i_{1}=1}^{N_{b}} \sum_{i_{2}=1}^{N_{b}} \left[a_{i_{1}} a_{i_{2}} \prod_{l=1}^{M} \left(C_{1,i_{l}l} C_{1,i_{2}l} \right) \right] \\ &= \sum_{i_{1}=1}^{N_{b}} \sum_{i_{2}=1}^{N_{b}} \left\{ a_{i_{1}} a_{i_{2}} \prod_{l=1}^{M} \left(C_{1,i_{l}l} C_{1,i_{2}l} \right) \right\} \left\{ \prod_{l \in U} \left[C_{2,i_{1}i_{2}l} \right] \left(C_{1,i_{l}l} C_{1,i_{2}l} \right) \right\} \right\}, \end{split}$$

Mean of univariate basis functions $C_{1,il} = \int h_{il}(x_l) p_l(x_l) dx_l$ Inner product of two univariate basis functions

$$C_{2,i_{l}i_{2}l} = \int h_{i_{l}l}(x_{l})h_{i_{2}l}(x_{l})p_{l}(x_{l})dx_{l}$$

Derivations for Commonly Used Metamodels

 Express commonly used metamodels in the form of tensor-product function

$$\begin{array}{ll} \text{Quadratic}\\ \text{Polynomial:} \qquad f(\mathbf{x}) = \beta_0 + \sum_{0 \le i, j \le M, j \ne 0} \beta_{ij} \prod_{l=1}^M h_{(i,j)l} \qquad h_{(i,j)l} = \begin{cases} 1 & \text{none of } (i, j) = l \\ x_l & \text{only one of } (i, j) = l \end{cases}$$

$$\begin{array}{ll} \text{Kriging:} \qquad f(\mathbf{x}) = \hat{\beta} + \sum_{i=1}^N \kappa_i \prod_{l=1}^M h_{il}(x_l) \qquad h_{il}(x_l) = \exp\left[-\theta_l (x_l - x_{il})^2\right] \end{aligned}$$

$$\begin{array}{ll} \text{Gaussian} \\ \text{RBF:} \qquad f(\mathbf{x}) = \beta + \sum_{i=1}^{N_\phi} [\lambda_i \prod_{l=1}^M h_{il}(x_l)] \qquad h_{il}(x_l) = \exp\left[-\frac{(x_l - t_{il})^2}{2\tau_i^2}\right] \end{aligned}$$

$$\begin{array}{l} \text{MARS:} \qquad f(\mathbf{x}) = a_0 + \sum_{i=1}^{N_b} [a_i \prod_{l=1}^M h_{il}(x_l)] \qquad h_{il}(x_l) = \left\{ \begin{array}{l} 1 & l \notin \mathbf{K}_i \\ [s_{il}(x_l - t_{il})]_+^q & l \in \mathbf{K}_i \end{array} \right\}$$

Derive analytical formulations of integrals C1 and C2

Role of Sensitivity Analysis (SA) in Design under Uncertainty

Prior-Design Stage

- Investigate model behavior
- Reduce model dimension

Post-Design Stage

- Resource allocation for uncertainty reduction
- Improve optimality under uncertainty

How can SA benefit design in different scenarios?

Global Response Probabilistic Sensitivity Analysis (GRPSA) Regional Response Probabilistic Sensitivity Analysis (**RRPSA**)

Kullback-Leibler Entropy Based SSA

Limitation of Variance-Based SSA: only measure the impact on performance variance.

Concept of K-L Entropy Measure: measure the divergence between the change of a distribution before (P_0) and after (P_1) the elimination of a random variable

$$D_{KL}(p_{1} | p_{0}) = \int_{-\infty}^{\infty} p_{1}(y) \cdot \log \frac{p_{1}(y)}{p_{0}(y)} dy = E_{p_{1}}\left[\log \frac{p_{1}(y)}{p_{0}(y)}\right]$$

Extending K-L Entropy for GRPSA and RRPSA

-The concept of "omission sensitivity" (Melchers, 1999) – impact by reducing uncertainty in a random variable or replacing it with a deterministic value.

$$D_{KL,x_i} = \int_{y_L}^{y_U} p_0(y(x_1,\dots,\mu_{x_i},\dots,x_n)) \log \frac{p_1(y(x_1,\dots,\mu_{x_1},\dots,x_n))}{p_0(y(x_1,\dots,x_i,\dots,x_n))} dy$$

Liu, H., Chen, W., and Sudjianto, A., "Relative Entropy Based Method for Global and Regional Sensitivity Analysis in Probabilistic Design", ASME Journal of Mechanical Design, 128(2), pp1–11, 2006

Vehicle Engine Piston Design

Each simulation run takes more than 1 hour on SUN Blade.

Piston Robust Design based on Secondary Motion Analysis

Responses Y Slap noise Piston friction **Y**= **f** (**X**,**P**)

Design Variables X

Variable	Description	Nominal Value	Lower Bound	Upper Bound	Unit
SL	Skirt Length	23.07	21	25	millimeter
SP*	Skirt Profile	3	1	3	/
SO*	Skirt Ovality	2	1	3	/
PO	Pin Offset	0.9	0.5	1.3	millimeter

Noise Variables P

Variable	Description	Distribution	Mean	STD	Unit
CL	Piston-to-bore Clearance	Normal	50	11	micrometer
LP	Location of Combustion Peak Pressure	Normal	14.5	1	degree

Piston Design SSA Results

Kriging model built using 30 + 30 sequential computer simulations (optimal Latin hyper cube for 4 design and 2 noise variables)

Piston Design Main & Interaction Effects

D – Design variableN – Noise variable

Taylor expansion is not accurate for assessing performance variance due to nonlinearity wrt the noise variable CL.

Uncertainty Propagation (Slap Noise)

Mean

Standard Deviation

Monte Carlo

Model Uncertainty

These are all potential response surfaces consistent with the 4 simulation results

Understanding Model Uncertainty

- How safe is it to use the metamodel in robust design? How many runs do we need?
- If we need to continue simulation, which regions shall we focus on?
- If an immediate design decision is needed, how to ensure it is robust to both metamodel uncertainty and noise uncertainty?
- How to design efficient simulation strategy to effectively reduce model uncertainty and achieve optimal design?

Bayesian Analysis of Gaussian Random Process

- The true response surface is viewed as a realization of Gaussian Random Process $G(\bullet)$
- The sampled sites are viewed as observations of the GRP $G(\bullet)$
- To represent interpolation uncertainty between the sampled sites, calculate the posterior distribution given the observations and a prior for the GRP
 - Prior mean $E[G(\mathbf{x})] = \mathbf{h}^T(\mathbf{x})\boldsymbol{\beta}$
 - Prior covariance $Cov[G(\mathbf{x}), G(\mathbf{x}')] = \alpha^2 R_{\phi}(\mathbf{x}, \mathbf{x}')$

Reference: Sacks, et.al. 1989; Currin, et.al., 1991; Kennedy and O'Hagan, 2001; Handcock, et.al., 1993

– Posterior mean (best Bayesian prediction)

$$\hat{y}(\boldsymbol{x}) = E_{\boldsymbol{G}|\boldsymbol{w},\boldsymbol{y}N}[Y(\boldsymbol{G},\boldsymbol{d},\boldsymbol{w})|\boldsymbol{w},\boldsymbol{y}^{N}] \\ = \boldsymbol{h}^{T}(\boldsymbol{x})\hat{\boldsymbol{\beta}} + \boldsymbol{r}^{T}(\boldsymbol{x})\mathbf{R}^{-1}(\boldsymbol{y}^{N} - \mathbf{H}\hat{\boldsymbol{\beta}})$$

Posterior covariance

 $Cov[Y(G,d,w),Y(G,d',w')|y^{N}] = \alpha^{2} \{R\phi(x,x') - r^{T}(x)R^{-1}r(x') + [h(x) - H^{T}R^{-1}r(x)]^{T}[H^{T}R^{-1}H]^{-1} [h(x') - H^{T}R^{-1}r(x')]\},\$

Reference: Sacks, et.al. 1989; Currin, et.al., 1991; Kennedy and O'Hagan, 2001; Handcock, et.al., 1993

Analytical Derivation of Prediction Intervals of Robust Design Objective

- For robust design $\sigma(d|G)$ is also of interest
 - Consider more general objective $f(d|G) \equiv \mu(d|G) + c\sigma(d|G)$
- Similar but much more complicated derivation can be applied to $\sigma(d|G)$ to obtain $\mu_{\sigma}(d)$ and $\sigma_{\sigma}^2(d)$
- With some more assumptions, closed-form approximate can be obtained for the (1-p) PI of f

 $f(\boldsymbol{d}/\boldsymbol{G}) \in \mu_f(\boldsymbol{d}) \pm z_{p/2}\sigma_f(\boldsymbol{d})$

Apley, D., Liu, J., and Chen, W., "Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments", in press, *ASME Journal of Mechanical Design*, accepted in December 2005.

Computational Advantage

- Monte Carlo method to estimate the PI require prohibitive amount of computation
- For instance, to estimate $\mu_f(d)$ and $\sigma_f(d)$ used for PI, one needs to
 - Generate realizations of GRP G
 - For each G, one needs to numerically integrate over W for all d to obtain one realization of f(d|G)
 - Repeat, e.g., 10,000 times to estimate the mean and variance of f(d|G)

A single realization of G

A 10 input variable case requires $20^{10} \times 20^{10}$ covariance matrix to generate multivariate normal variates plus numerical integrations for each of the 10,000 replicates

Our analytical approximations provide computationally feasible approach to high-dimensional robust design problems

Comparison of Design Alternatives

d=1.5 seems to be the best candidate among the three

Non-overlapping prediction intervals, conclude d = 1.5 is the best among the three candidates (with approximately 95% confidence)

PI Plots for Guiding Further Simulation

All 10 simulation results

Significant portion of the design space can be ruled out as inferior, resulting in more efficient simulation

Constructing Optimal Design of Computer Experiments (Jin et al. JSPI 2005)

- Element-Exchange Operations: to perturb the current design without changing the special structure
- Enhanced Stochastic Evolutionary (ESE) Search Algorithm: to efficiently search optimal experimental designs
- Fast-updating methods: to efficiently evaluate the value of an uniformity criterion

Closure

- The metamodeling-based techniques play an important role in simulation-based design under uncertainty.
- Efficient statistical sensitivity analysis methods are needed to enable designers to make informed decisions under uncertainty.
- Uncertainty of model uncertainty due to metamodeling needs to be considered in decision making and sequential sampling.
- How to handle both model uncertainty and parameter uncertainty needs to be studied.

Definition of Optimal Experimental Design

Search an optimal design according to a given optimality criterion

$$\min_{\mathbf{X}\in\mathbf{Z}} f(\mathbf{X})$$

- X: experimental design matrix
- Z: A particular class of designs with special structural properties
- *f*: Optimality criterion (to measure space-filling property of **X**): e.g.,
 - > Maximin $-\phi_p$ criterion (Johnson et al; Morris and Mitchell)
 - > Centered L_2 Discrepancy Criterion (Fang et al.)
 - > Entropy criterion (Shewry and Wynn, Currin et al.)

Optimality Criteria

Let X be the design matrix

Entropy (Shewry and Wynn, Currin et al.)

$$\min_{\mathbf{X}} \left(-\log |\mathbf{R}|\right) \qquad \qquad R_{ij} = \exp \left(-\sum_{k=1}^{m} \theta_k \left| x_{ik} - x_{jk} \right|^t\right), 1 \le i, j \le n; 1 \le t \le 2$$

- MAXIMIN ϕ_p (Johnson et al., Morris and Mitchell) $\max_{\mathbf{x}} \left[\min_{1 \le i < j \le n} (d(\mathbf{x}_i, \mathbf{x}_j)) \right] \quad d_{ij} = d(\mathbf{x}_i, \mathbf{x}_j) = \left[\sum_{k=1}^m |x_{ik} - x_{jk}|^t \right]^{1/t}$ $\phi_p = \left[\sum_{i=1}^s J_i d_i^{-p} \right]^{1/p} \quad d_1 < d_2 < \dots < d_s; (J_1, J_2, \dots, J_s), J_i \# \text{ of pairs separated by } d_i.$
- Centered-L₂ Discrepancy (Fang et al.)

$$\min CL_{2}(\mathbf{X})^{2} = \left(\frac{13}{12}\right)^{2} - \frac{2}{n} \sum_{i=1}^{n} \prod_{k=1}^{m} \left(1 + \frac{1}{2} \left|x_{ik} - 0.5\right| - \frac{1}{2} \left|x_{ik} - 0.5\right|^{2}\right) + \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \prod_{k=1}^{m} \left(1 + \frac{1}{2} \left|x_{ik} - 0.5\right| + \frac{1}{2} \left|x_{jk} - 0.5\right| - \frac{1}{2} \left|x_{ik} - x_{jk}\right|\right)$$

Updating Operations for Constructing New Experimental Matrix

Columnwise Element-Exchange Operation

Preserves design matrix structure such as balance property, Latin Hypercube, etc. Extensions can be made to OA and OA-based LHD

Comparison of Acceptance Criteria

Column Pairwise (Li and Wu, 1997)

$$p(T, f(\mathbf{X}^{\text{new}}), f(\mathbf{X})) = \begin{cases} 1 & \text{for } f(\mathbf{X}^{\text{new}}) - f(\mathbf{X}) < T \text{ where } T = 0 \\ 0 & \text{otherwise} \end{cases}$$

- Threshold Acceptance (Winker and Fang, 1997) $p(T, f(\mathbf{X}^{\text{new}}), f(\mathbf{X})) = \begin{cases} 1 \text{ for } f(\mathbf{X}^{\text{new}}) - f(\mathbf{X}) < T^{i} \\ 0 \text{ otherwise} \end{cases} \quad T^{i} = \alpha T; (0 \le \alpha < 1)$
- Simulated Annealing (Morris and Mitchell, 1995) $p(T, f(\mathbf{X}^{\text{new}}), f(\mathbf{X})) = \exp\{-[f(\mathbf{X}^{\text{new}}) - f(\mathbf{X})]/T^i\}$ $T^i = \alpha T; (0 \le \alpha < 1)$
- Enhanced Stochastic Evolutionary (ESE)

$$p(T, f(\mathbf{X}^{\text{new}}), f(\mathbf{X})) = \begin{cases} 1 \text{ for } f(\mathbf{X}^{\text{new}}) - f(\mathbf{X}) < 0\\ 1 - \left[f(\mathbf{X}^{\text{new}}) - f(\mathbf{X}) / T^{i} \right] \text{ for } f(\mathbf{X}^{\text{new}}) - f(\mathbf{X}) < T^{i}\\ 0 \text{ otherwise} \end{cases}$$

Temp decrease $T^i = \alpha_1 T$ and Temp increase $T^i = T/\alpha_2$ where $\alpha_j \ (0 \le a_j < 1, j = 1, 2)$

Fast Updating Calculation of Criteria

Re-using most of

limited-number of

elements when

and updating

the matrix elements

After *k*th-column element exchange, $x_{i_1k} \leftrightarrow x_{i_2k}$

Entropy

$$-\log |\mathbf{R}| \qquad r_{i_{2}j}' = r_{ji_{2}}' = r_{i_{2}j} s(i_{1}, i_{2}, k, j) \mathbf{R} = [r_{ij}]_{n \times n} \qquad r_{i_{1}j}' = r_{ji_{1}}' = r_{i_{1}j} / s(i_{1}, i_{2}, k, j) s(i_{1}, i_{2}, k, j) = \exp \left[\theta_{k} \left(\left| x_{i_{2}k} - x_{jk} \right|^{t} - \left| x_{i_{1}k} - x_{jk} \right|^{t} \right) \right]$$

- $\phi_{p} \text{MAXIMIN}$ $\phi_{p}' = \left[\phi_{p} + \sum_{1 \le j \le n, j \ne i_{1}, i_{2}} \left[(d_{i_{1}j}')^{-p} d_{i_{1}j}^{-p} \right] + \sum_{1 \le j \le n, j \ne i_{1}, i_{2}} \left[(d_{i_{2}j}')^{-p} d_{i_{2}j}^{-p} \right] \right]^{1/p}$ $\mathbf{D} = \left[d_{ij} \right]_{n \times n}$ $d_{ij} = d(\mathbf{x}_{i}, \mathbf{x}_{j}) = \left[\sum_{k=1}^{m} \left| x_{i_{k}} x_{j_{k}} \right|^{t} \right]^{1/t}$ $d_{i_{1}j}' = d_{ji_{1}}' = \left[d_{i_{1}j}'' + s(i_{1}, i_{2}, k, j) \right]^{1/t}$ $d_{i_{2}j}' = d_{ji_{2}}' = \left[d_{i_{2}j}'' s(i_{1}, i_{2}, k, j) \right]^{1/t}$ $s(i_{1}, i_{2}, k, j) = \left| x_{i_{2}k} x_{j_{k}} \right|^{t} \left| x_{i_{1}k} x_{j_{k}} \right|^{t}$
- Centered-L₂ Discrepancy

$$C(CL_{2}^{2})' = CL_{2}^{2} + c_{i_{1}i_{1}}' - c_{i_{1}i_{1}} + c_{i_{2}i_{2}}' - c_{i_{2}i_{2}} + 2 \times \sum_{1 \le j \le n, j \ne i_{1}, i_{2}}^{n} (c_{i_{1}j}' - c_{i_{1}j} + c_{i_{2}j}' - c_{i_{2}j})$$

$$C = [c_{i_{j}}]_{n \times n} \qquad c_{i_{j}} = \begin{cases} \frac{1}{n^{2}} \prod_{k=1}^{m} \frac{1}{2} (2 + |z_{i_{k}}| + |z_{j_{k}}| - |z_{i_{k}} - z_{j_{k}}|) & \text{if } i \ne j \\ \frac{1}{n^{2}} \prod_{k=1}^{m} (1 + |z_{i_{k}}|) - \frac{2}{n} \prod_{k=1}^{m} (1 + \frac{1}{2} |z_{i_{k}}| - \frac{1}{2} z_{i_{k}}^{2}) & \text{otherwise} \end{cases}$$

Computational Saving of the New Criterion Evaluation Algorithms

Computational Complexity (<i>n</i> : number of runs, <i>m</i> : number of variables)				
	ϕ_p	CL ₂	Entropy	
Re-evaluating Algorithms	$O(mn^2) + O(n^2 \log_2(n)) + O(s^2 \log_2(p))$	$O(mn^2)$	$O(n^3)+O(mn^2)$	
New Algorithms	$O(n)+O(n \log_2(p))$	O (<i>n</i>)	$O(n^2)+O(n) \sim O(n^3)+O(n)$	

ESE vs. CP for Constructing Optimal 25×4 LHDs Based on ϕ_p Criterion (p = 50 and t = 1)

	Exchanges Number	Min L_1 Distance	Computing Time
CP¶	2,241,900 (100)	0.8750	10.63 hr
ESE*	120,000	0.9167	2.5 sec

¶ Tested on Sun SPARC 20 Workstation.

* Tested on a PC with a Pentium III 650 MHZ CPU.

- The results of CP algorithm were reported in literature (Ye et al, 2000) in the form of the minimum *L*1 distance (the larger the better).

Examples of Derivations (Kriging)

- Uniform distributions of input variables $C_{1,il} = \frac{1}{2\delta_i} \sqrt{\frac{\pi}{\theta_i}} \left\{ \Phi(a_{il}\sqrt{2\theta_l}) - \Phi(b_{il}\sqrt{2\theta_l}) \right\}$

$$C_{2,i_{1}i_{2}l} = \frac{1}{2\delta_{l}}\sqrt{\frac{\pi}{2\theta_{l}}} \exp\left[-\theta_{l}(x_{i_{1}l} - x_{i_{2}l})^{2}/2\right] \times \left(\Phi\left[\sqrt{\theta_{l}}(a_{i_{1}l} + a_{i_{2}l})\right] - \Phi\left[\sqrt{\theta_{l}}(b_{i_{1}l} + b_{i_{2}l})\right]\right)$$

Where
$$a_{il} = \mu_l + \delta_l - x_{0il}$$
 $b_{il} = \mu_l - \delta_l - x_{0il}$

 $\Phi(.)$ -CDF of standard normal distribution – Normal distributions of

input variables

$$C_{1,il} = \frac{1}{\sqrt{2\sigma_l^2 \theta_l + 1}} \exp\left[-\frac{\theta_l}{2\sigma_l^2 \theta_l + 1} (\mu_l - x_{il})^2\right]$$
$$C_{2,i_l i_2 l} = \frac{1}{\sqrt{4\sigma_l^2 \theta_l + 1}} \exp\left\{-\frac{\theta_l}{4\sigma_l^2 \theta_l + 1} [(\mu_l - x_{i_l l})^2 + (\mu_l - x_{i_2 l})^2 + 2\sigma_l^2 \theta_l (x_{i_l l} - x_{i_2 l})^2]\right\}$$

Bayesian Prediction Intervals for Quantifying Interpolation Uncertainty

- The robust design objective is now a function of the random process $G(\bullet)$

 $f(\boldsymbol{d}|\boldsymbol{G}) \equiv \mu(\boldsymbol{d}|\boldsymbol{G}) + c\,\sigma(\boldsymbol{d}|\boldsymbol{G})$

- Special case: $f(d|G) \equiv \mu(d|G)$
- Note $\mu(d|G)$ follows Gaussian distribution with
 - Mean $\mu_{\mu}(d) = \int p_{w}(w)dw$
 - Variance = $\iint Co\hat{\mathcal{Y}}(\boldsymbol{q},\boldsymbol{Q},\boldsymbol{w}), Y(G,\boldsymbol{q},\boldsymbol{w}')|\boldsymbol{y}^N]p_{\boldsymbol{w}}(\boldsymbol{w})d\boldsymbol{w}p_{\boldsymbol{w}}(\boldsymbol{w}')d\boldsymbol{w}'$
 - Thus $\mu(d|G)_{\sigma_{\mu}} (\mathcal{A}_{\mu}) \pm z_{p/2} \sigma_{\mu}(d)$ with (1-p) confidence