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Outline 

Validation philosophy 
 

Uncertainty representation and estimation 
Develop intuition on simple problems 

 
Challenge problem 



  

The Physical Problem 
Problem Description: 

Objective: 

Is a linear model valid for representing the weak nonlinearity 
of the subsystem-to-beam connection?  



  

Validation  Procedure 

 Subsystem calibration (20 physical specimens, each subjected to three different input excitation) 

 Subsystem validation (20 new specimens, each subjected to three new input excitation) 

 System Validation (3 physical specimens, each subjected to one input excitation) 

 System Accreditation (based on prediction - no data) 



  

Validation philosophy 

Given a  (physics model, data, and computational resources): 

 compute limits on predictability 

             i.e. which statements about system performance can be certified 

 compute resource allocation (data/computing) along validation path 

Given a  (physics model - with infinite data/computing resources): 

 compute limits on predictability     
             i.e. which statements about system performance can be certified 



  

Error budget 

limit on predictability, given a model 

MUST BE QUANTIFIED !!!! 



  

Motivation of approach 

PackagePackage information efficiently for intended purpose: 

 

 propagate information through large scale computational models. 

 

  decide on a path for validation: 

 sensitivity to additional information 

 sensitivity to uncertainty in model components 

 sensitivity to numerical approximations 



  

Representing uncertainty 
The random quantities are resolved as surfaces in 

a normalized space: 

 

 

 

 

 

These could be, for example: 

• Parameters in a PDE 

• Boundaries in a PDE (e.g. Geometry) 

• Field Variable in a PDE 

Multidimensional Orthogonal 
Polynomials 

Independent random variables 

Dimension of vector    reflects 
complexity of  



  

Error budget 

IF PREDICTION IS OBTAINED USING A WEAK FORM OF SOME GOVERNING EQUATION: 

 

 Joint error estimation is possible, for special cases: 

 infinite-dimesional gaussian measure:  Benth et.al, 1998 

 tensorized iid measure:  Babuska et.al, 2004 

 

 Joint error estimation is possible, for general measures, using nested approximating 
spaces (Doostan, Ghanem, Rozovsky, 2006)  

 



  

 Galerkin Projections 

 Efficient - unsuitable for dependent scales 

 Maximum Likelihood 

 

 Maximum Entropy 

 Suitable for data-driven constraints 

 Bayes Theorem 

Characterization of Uncertainty 

Characterize            
as random variables 



  

Starting with observations of process 
over a limited points on the domain: Reduced order representation:   

Representing uncertainty 

Polynomial representation of KL variables: 



  

Physical object: Linear 
Elasticity 

Stochastic parameters 

Convergence as function of 
“dimensionality” 

Characterizing Uncertainty 
Maximum Likelihood Estimation 

Beam with random heterogeneous 
material properties. 

 

Observe realizations of system 
response 

Reference:  Desceliers, Ghanem amd Soize, , IJNME, 2006. 



  

Characterization of Uncertainty:  
Bayesian Inference 

Posterior distributions of coefficients in 
polynomial Expansion      of  

Distribution of the recovered process: 

Reference:  Doostan and Ghanem, , Journal of  Computational Physics, 2006. 



  

Characterization of Uncertainty:  
Maximum Entropy Estimation with Moment Constraints 

Reference:  Das, Ghanem, and Spall,  SIAM Journal on Scientific Computing, 2006. 



  Temperature time histories,              , at various depths. 

Characterization of Uncertainty  
Maximum Entropy Estimation / Spatio-Temporal Processes 



  

• Reduced order model of 
       KL expansion                          

 

A typical plot of marginal pdf for a Karhunen-
Loeve variable. 

Characterization of Uncertainty 
Maximum Entropy Estimation with Histogram Constraints 

Spearman Rank Correlation 
Coefficient is also matched: 

Reference:  Das, Ghanem, Finette, , Journal of  Geophysical Research, 2006. 



Approximate asymptotic representation: 

Representation on the set of observation: 

Representation smoothed on the whole domain: 

Remark:     is formulated by spectral decomposition of           . 

Remark: Both intrinsic uncertainty and uncertainty due to lack of data are represented. 

Uncertainty modeling for system parameters 



Important remarks:  

  Asymptotically, the total uncertainty reduces to intrinsic 
uncertainty. 

  Contribution of uncertainty due to limited information could be 
separated from that of the intrinsic uncertainty both at parameter 
level and response level. 

  Sensitivity of the statistics of SRQ to parameters of     can be 
quantified.  

Additional information and sensitivity analysis 



Estimate 

%95 probability box 

Remarks:  
  Confidence intervals are due to finite sample size. 

CDF of system parameters: m1, c1, k1 
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Calibration Excitation = Low 

Maximum acceleration of the top mass 

Mean for calibrated 
linear model 

Observation form 
actual system 

Model accuracy 
predicting accelerations of calibrated model  



Equivalent hypothesis test: 

System Response Quantity (SRQ): 
Maximum acceleration of the top mass = a3m 

Remark: 

 Parameters are calibrated  under      . 

         = mean of predicted       from linear model. 
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%95 confidence 
interval around  

Propagation using calibrated stochastic linear model: 

Stochastic 

Projection/ 

Monte Carlo 

pd
f 

+ 
validation force 

Validation path: hypothesis test 



pd
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%95 confidence 
interval around  

Possible scenarios: Repeat for all validation data  

pd
f 

%95 confidence 
interval around  

No sufficient evidence to reject H0 H0  is rejected  

Therefore: 

Validation metric: 

Validation path: hypothesis test 
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Calibration Excitation = Medium 

Validation Excitation  = High 

Typical subsystem validation result 
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Calibration Excitation = Medium 

Validation Excitation  = High 

Typical subsystem validation result 
neglecting effect of finite sample 



Subsystem validation outcome 

Accepted Medium 

Accepted High 

Accepted Low  
High 

 

Accepted High 

Accepted Medium 

Accepted Low  
Medium 

 

Accepted High 

Accepted Medium 

Accepted Low  
Low 

 

Hypothesis Validation Excitation 
Level  

Calibration Based 
On Excitation 

Level 



Calibration Excitation = Medium 

Accreditation Excitation  = 2 

Fr
eq

u
en

cy
 

Typical accreditation result 



System accreditation outcome 

Accepted 2 

Accepted 3 

Accepted 1  
High 

 

Accepted 3 

Accepted 2 

Accepted 1  
Medium 

 

Accepted 3 

Accepted 2 

Accepted 1  
Low 

 

Hypothesis Accreditation 
Excitation Number  

Calibration Based 
On Excitation 

Level 



0.004300 0.1269 High 

0.001500 0.0662 Medium 

0.000830 0.0835 Low 

Sample Variance 
 of 

Sample Mean 
 of           

Calibration Based On 
Excitation Level 

Remark: Based on only 25 samples. 

Prediction on target application 



  

Conclusion 

 Suitable Uncertainty Quantification can provide an 
integrated path for model validation. 


