

Error Budget for the Validation of Physics-Based Predictive Models

Roger Ghanem Alireza Doostan University of Southern California Los Angeles, California

John Red-Horse

Sandia National Laboratories

Albuquerque, NM

Joint Research Conference (JRC 2006), Knoxville, TN, June 8, 2006.

- □ Validation philosophy
- Uncertainty representation and estimation
 Develop intuition on simple problems
- Challenge problem

Objective:

Is a linear model valid for representing the weak nonlinearity of the subsystem-to-beam connection?

Validation Procedure

Subsystem calibration (20 physical specimens, each subjected to three different input excitation)

- Subsystem validation (20 new specimens, each subjected to three new input excitation)
- System Validation (3 physical specimens, each subjected to one input excitation)
- System Accreditation (based on prediction no data)

Validation philosophy

Given a (physics model, data, and computational resources):

- compute limits on predictability
 - i.e. which statements about system performance can be certified
- compute resource allocation (data/computing) along validation path

Given a (physics model - with infinite data/computing resources):

compute limits on predictability

i.e. which statements about system performance can be certified

$$\mathbf{U} = \hat{\mathbf{U}}|_{h,d,p,m} + \epsilon_h|_{p,d,m} + \epsilon_p|_{d,m} + \epsilon_d|_m + \epsilon_m$$

limit on predictability, given a model MUST BE QUANTIFIED !!!!

- $\epsilon_{p|d,m}$: can be reduced through better statistics.
 - $\epsilon_{d|m}$: can be reduced through better data.

 ϵ_m : can be reduced through better models.

Motivation of approach

Package information efficiently for intended purpose:

propagate information through large scale computational models.

decide on a path for validation:

sensitivity to additional information

sensitivity to uncertainty in model components

sensitivity to numerical approximations

Representing uncertainty

The random quantities are resolved as surfaces in

a normalized space:

$$\alpha(\mathbf{x},\theta) = \sum_{i=1}^{\infty} \alpha_i(\mathbf{x}) \Psi_i(\{\boldsymbol{\xi}(\theta)\})$$

These could be, for example:

- Parameters in a PDE
- Boundaries in a PDE (e.g. Geometry)
- Field Variable in a PDE

ψ_0	=	1
ψ_1	=	ξ1
ψ_2	=	<u>ξ</u> 2
ψ_{3}	=	$\xi_1^2 - 1$
ψ_{4}	=	<u>ξ1ξ2</u>
ψ_5	=	$\xi_2^2 - 1$

- Independent random variables
- Multidimensional Orthogonal Polynomials

Dimension of vector $\boldsymbol{\xi}$ reflects complexity of $\boldsymbol{\alpha}$

Error budget

 $\mathbf{U} = \hat{\mathbf{U}}|_{h,d,p,m} + \epsilon_h|_{p,d,m} + \epsilon_p|_{d,m} + \epsilon_d|_m + \epsilon_m$

IF PREDICTION IS OBTAINED USING A WEAK FORM OF SOME GOVERNING EQUATION:

□ Joint error estimation is possible, for special cases:

□ infinite-dimesional gaussian measure: Benth et.al, 1998

Latensorized iid measure: Babuska et.al, 2004

□ Joint error estimation is possible, for general measures, using nested approximating spaces (Doostan, Ghanem, Rozovsky, 2006)

Characterization of Uncertainty

$$\alpha(\mathbf{x}, \theta) = \sum_{i=1}^{\infty} \alpha_i(\mathbf{x}) \Psi_i(\{\boldsymbol{\xi}(\theta)\})$$

Galerkin Projections

- Efficient unsuitable for dependent scales
- Maximum Likelihood
- Maximum Entropy
 - Suitable for data-driven constraints
- Bayes Theorem

Characterize $\alpha_i(x)$ as random variables

Representing uncertainty

Reduced order representation:

Starting with observations of process over a limited points on the domain:

Characterizing Uncertainty Maximum Likelihood Estimation

×	<u>Physical object</u> : Linear Elasticity	Stochastic parameters
		Beam with random heterogeneous material properties.
		Observe realizations of system response
×		
	Convergence as function o "dimensionality"	of $\alpha(\mathbf{x},\theta) = \sum_{i=1}^{\infty} \alpha_i(\mathbf{x}) \Psi_i(\{\boldsymbol{\xi}(\theta)\})$
nce: Desceliers G	anem amd Soize UNME 2006	

Characterization of Uncertainty: Bayesian Inference

Characterization of Uncertainty: Maximum Entropy Estimation with Moment Constraints

Characterization of Uncertainty Maximum Entropy Estimation / Spatio-Temporal Processes

Temperature time histories, T(z,t) , at various depths.

Uncertainty modeling for system parameters

Approximate asymptotic representation:

$$\sqrt{M}(ilde{\gamma} - \hat{\gamma}) \stackrel{\mathsf{dist}}{\longrightarrow} N(\mathsf{0}, \widehat{J}(\hat{\gamma})^{-1})$$

Representation on the set of observation:

$$\widehat{a} = \overline{a} + \sum_{i=1}^{\mu} \sqrt{\lambda_i} \left(\sum_{j=1}^{p} \widetilde{\gamma_j}^{(i)} \overline{\psi_j}(\xi_i) \right) \phi_i$$

Remark: Both intrinsic uncertainty and uncertainty due to lack of data are represented.

Representation smoothed on the whole domain:

$$\widehat{a}(x,\omega) = \widetilde{\overline{a}}(x) + \sum_{i=1}^{\mu} \sqrt{\lambda_i} \left(\sum_{j=1}^{p} \widetilde{\gamma_j}^{(i)} \overline{\psi_j}(\xi_i) \right) \widetilde{\phi_i}(x)$$

Remark: $\tilde{\gamma}$ is formulated by spectral decomposition of $\hat{J}(\hat{\gamma})^{-1}$.

Additional information and sensitivity analysis

Important remarks:

Asymptotically, the total uncertainty reduces to intrinsic uncertainty.

Contribution of uncertainty due to limited information could be separated from that of the intrinsic uncertainty both at parameter level and response level.

 $\hfill\square$ Sensitivity of the statistics of SRQ to parameters of $\tilde{\gamma}$ can be quantified.

Validation path: hypothesis test

System Response Quantity (SRQ):

Maximum acceleration of the top mass = a_{3m}

Propagation using calibrated stochastic linear model:

Subsystem validation outcome

Calibration Based On Excitation Level	Validation Excitation Level	Hypothesis
Low	Low	Accepted
	Medium	Accepted
	High	Accepted
Medium	Low	Accepted
	Medium	Accepted
	High	Accepted
High	Low	Accepted
	Medium	Accepted
	High	Accepted

System accreditation outcome

Calibration Based On Excitation Level	Accreditation Excitation Number	Hypothesis
Low	1	Accepted
	2	Accepted
	3	Accepted
Medium	1	Accepted
	2	Accepted
	3	Accepted
High	1	Accepted
	2	Accepted
	3	Accepted

Prediction on target application

$$P_{am} := \operatorname{Prob}\left\{\max_{t>0}|a(t)| > 1.8(10^4)in/sec^2\right\} < 10^{-2}$$

Calibration Based On Excitation Level	Sample Mean of P_{am}	Sample Variance of P_{am}
Low	0.0835	0.000830
Medium	0.0662	0.001500
High	0.1269	0.004300

Remark: Based on only 25 samples.

Conclusion

Suitable Uncertainty Quantification can provide an integrated path for model validation.