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Introduction
Simulation-based design used for products and systems
Models might be discrete-event simulation, finite element 
modeling or other engineering design modeling software

I-Beam Desk Lamp Pressure Vessel
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Introduction
Why inverse models?

House 2 of QFD process and customer 
driven design

Goal: formalize the mapping
technical specifications design parameters

Strategy: metamodeling (approximations)
metamodels run faster than engineering model
This is the key to customer-driven 
mapping:
maps inverse to the usual engineering models can be 
fitted with few (or no) extra forward runs, even 
when no explicit inverse model exists
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Metamodeling:  Approximation
A metamodel is a model of a 
model

Metamodeling process for standard regression

1. Identify region of interest Rx

2. Choose basis functions for mf (X)

3. Select fitting design X  є Cx     X D 

4. Estimate true response    f (X ) ~ y or 

5. Fit approximation b = (D ’D)-1D ’y 

6. Validate approximation (metamodel) fit overRx

y

Simulation model
f (X ) = E(Y ) 

Metamodel
mf (X ) ~ f (X )
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Inverse Metamodel Idea

Given
X = n x k matrix of design parameters
Y = n x p matrix of performance measures

Use (X, Y ) data to fit p forward metamodels
Use (X, Y ) as (Y, X ) to fit k inverse metamodels

Note
Fitting an inverse metamodel is not generally the same as the 

forward metamodel’s inverse
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Simulation of Inventory Policy 
at Freescale Semiconductor

(Morrice, Valdez, Chida and Eido, WSC05)

Objective:  How does inventory policy affect on time delivery (FOTD)?
Added:  cost implications for change (COST)
Inventory level (MaxDieQ) controls job release rate
Front End Lead Time (FELT) a constraining factor but expensive to 
improve

Front End Fab

Back End (Assy/Test)

Customer Order Projection

Final Realized Cust. Orders

Die
Inventory

Finished
Inventory

Logistics Orders Delivered
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Simulation of Inventory Policy 
at Freescale Semiconductor

(Morrice, Valdez, Chida and Eido, WSC05)

Simulation used to model effects of MaxDieQ and 
FELT on performance (FOTD, COST)
Simulation metamodels allow one to explore how 
design changes affect performance
Ideally, would rather explore 2-D performance space 
and have corresponding design identified
How do spaces relate?
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Simulation of Inventory Policy 
at Freescale Semiconductor

(Morrice, Valdez, Chida and Eido, WSC05)

Design (Domain) and Performance (Range) Spaces
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Forward and Inverse 
Metamodels:  Key Issues
Key Issues

When the target point ydesired occurs at the local minimum 
or maximum of one or more elements of f, the function will 
not be (locally) invertible.
When the dimension of y (i.e., p) does not match the 
dimension of x  (i.e., p ≠ k), how can an inverse function 
be established?
How can one find an ‘optimal’ experiment design for 
simultaneously fitting mf and mf -1?
What is the relationship between (mf )-1 and mf -1?
How can constraints on x and y be included in the 
experiment design methodology? 
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Forward and Inverse 
Metamodels:  Key Issues

Today We’ll Focus on One Key Issue
How can one find an ‘optimal’ experiment design 
for simultaneously fitting mf and mf -1?
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Model-Based Measures of Design 
Optimality

Consider the linear model plus interaction:

f (X) = y = β0 + β1x1 + β2x2 + β12x12

Run Matrix    Design Matrix

x1 x2

1    -1
1 1

-1 -1
-1 1

1 x1 x2 x12

1    1    -1    -1
1    1     1     1
1   -1    -1     1
1   -1     1    -1

D =X =

D-optimality minimizes the variance of the parameter estimates b
choose X to maximize det(D ’D)
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Model-Based Measures of Design 
Optimality

G-optimality minimizes the variance of a predicted value at x0 based on b

choose X to minimize max{f (x0)’(D’D)-1f (x0)}

A-optimality minimizes the average variance of the components of b

choose X to minimize Σ(1/λq), where 1/λq , q = 1, ..., r
are the eigenvalues of (D'D)

E-optimality minimizes the variance of any combination a'b with Σaq=0 and 
a'a=1

choose X to minimize max{1/λq }, where the maximum 
is over q = 1, ..., r
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Model-Based Measures of Design 
Optimality

Combined Forward-Inverse D-Optimal Designs were developed by 
Barton, Meckesheimer and Simpson using a two-phase 
approximation to generate x-optimal optimal designs for the first 
phase and y-optimal designs for the second phase
These are Model-Based optimality measures, but need 
know only the form, not the model coefficients

This means that simultaneous selection of the design points is fine –
observing responses that give more information about the unknown
coefficients does not give an opportunity to improve the design

Applicable for standard regression metamodels, not for more 
general metamodels such as spatial correlation (kriging), radial
basis functions, neural networks, smoothing splines

For more general metamodels, sequential designs based on 
reducing prediction variance have advantages
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Other Model-Based Designs

Sequential Minimum Prediction Variance 
Designs:  van Beers and Kleijnen use cross-
validation/jackknife methods and bootstrapping methods to 
estimate prediction variance of metamodels at untested points, 
then choose the untested point with the highest prediction 
variance for the next experiment
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Designs based on Optimal Spatial 
Characteristics

Uniform Designs based on Discrepancy minimizes the difference 
between the percentage of points falling in a particular region on a unit cube and the 
percentage of volume occupied by this region

0

0.5

1

0 0.5 1

g1

g2

Latin Hypercube designs are orthogonal arrays of strength 1, easy 
to construct but must be evaluated against specific metrics (e.g. D-optimality) 
to get good designs

Orthogonal Arrays are fractions of multi-level factorial designs with 
good projection properties (projection dimension depends on ‘strength’)
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Designs based on Spatial Characteristics 
(cont.)

Minimax distance designs provide low bias by minimizing the 
maximum distance between each sample point and every point in the 
design space

Maximin distance designs provide low variance by maximizing the 
minimum distance between any two points in the design space, and D-
optimal under general conditions

A Two-Phase Combined Maximin Forward-
Inverse design will be described next
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A Combined Forward-Inverse Maximin
Strategy

Two-Phase Maximin Method: Assume use N > Nmin runs

1. Use N0 ≥ Nmin maximin (in terms of x) first phase forward model runs   (X Mmx) to 
generate image points in y-space (Y 1).

2. Scale X and Y to +/-1 for each coordinate.  Keep this scaling through the rest of 
the process.

3. Fit the phase 1 forward metamodel, mf1.

4. In second phase, select N – N0 design points (X Mmxy) that are maximin both in 
terms of X (direct calculation) and Y (by computing the distances for candidate 
image points Y 2 using mf1). 

5. Evaluate the models at X Mmxy to get the trueY 2

6. Fit the final forward metamodel (mf) with {X Mmx, Y 1} U {X Mmxy, Y 2}

7. Fit the final inverse metamodel (mfinv) with {Y 1, X Mmx} U {Y 2, X Mmxy}, for y in 
Y 1 and y in Y 2 satisfying y є Cy
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Inventory Example with Forward Maximin
20 points, Maximin on X for All:  Xmin = 0.50, Ymin = 0.13 

(scaled units: +/-1)
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Inventory Example with Forward Maximin
20 points, Maximin on X for First 10, X and Y for Next 10:  

Xmin = 0.32, Ymin = 0.32 (Y distance same as X)

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Transformed MaxDieQ

Tr
an

sf
or

m
ed

 F
EL

T

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

Transformed Factory OTD

Tr
an

sf
or

m
ed

 C
os

t

X Space Y Space



Joint Research Conference 2006 22

Inventory Example with Forward Maximin
20 points, Maximin on X for First 10, X and Y for Next 10:  

Xmin = 0.40, Ymin = 0.29 (Y distance sccaled by 1.4)
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Inventory Example with Forward Maximin

A Comparison of Y-Space Designs
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Forward Maximin with Deterioration as 
Response Noise Increases

σ
(multiple of 
range of y 

values)

R2 for 
Phase 1 

Model for 
y1

R2 for 
Phase 1

Model for 
y2

Min. Dist. 
for x

Min. Dist. 
for y

0 1.0 1.0 0.40 0.29

0.1 0.96 0.99 0.41 0.22

0.2 0.86 0.95 0.40 0.14

0.3 0.75 0.91 0.39 0.10

Maximin X 
only

- - 0.50 0.13

Maximin Y 
only

- - 0.24 0.37
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Forward Maximin and Deterioration as 
Response Noice Increases

A Comparison of Y-Space Designs with Increasing Response Standard Deviation 
(1.4 dist. scaling)
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Conclusions Future Work

Combined forward-inverse metamodels have a place in 
product and process design

Future work:   continued development and assessment 
of spatial designs for non-regression metamodels 
(splines, radial basis functions, kriging)

Unresolved issues:  
Multiple objectives require desirability function, utility function?
Fully sequential vs phases?
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Forward and Inverse 
Metamodels:  Key Issues
Key Issues

When the target point ydesired occurs at the local minimum or 
maximum of one or more elements of f, the function will not 
be (locally) invertible
Measure:  To be locally invertible, the function f must be 1-1.  
Smooth maps will be invertible locally if and only if the matrix
of first derivatives, the Jacobian matrix, J = [∂fi /∂xj] evaluated 
at that point is invertible (full rank, i.e. have nonzero Jacobian 
determinant).  For the mapping to be globally invertible, the 
Jacobian determinant must be nonzero everywhere
Practical strategies:

Check Jacobian of preliminary fitted forward metamodel 
(randomly, via grid or via global minimization)
Select the coordinate functions of f carefully
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A Network Design Example
Discrete-event simulation models for service, business or 
manufacturing process design
Simple example:  network design, routing percentages P1, P2
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Packets
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via Net 1 Net 1 
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tion
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A Network Design Example
Suppose delay costs at $.005/time unit each 
packet is in the system.
Suppose per-packet processing cost ci varies by 
network: 

$.03 for network 1, 
$.01 for network 2 and 
$.005 for network 3.  

Suppose
1000 information packets must be processed
packet interarrival times have an exponential 
distribution with mean = 1 time unit
network transit times have triangular distributions 
with mean E(S) and limits +/- .5 
with E(S) = 1, 2, and 3 for networks 1, 2, and 3 
respectively. 

Objective:  find P1, P2 (the x’s in this example) 
with desired delay and cost objectives (the y’s)

Arriving 
Packets

False

P1%
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Forward and Inverse 
Metamodels:  Key Issues

Key Issues
Select the coordinate functions of f carefully to avoid 
local maxima/minima
If each fi is a monotonic function of the x variables 
on which it depends - then the map will be 
invertible.  This argues for the decomposition of a 
total cost function, for example, into separate 
investment cost and delay cost elements
Our example:  x = (P1,P2), and the components of f
could include delay costs and network use costs
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Forward and Inverse 
Metamodels:  Key Issues

Example:  f1 = total delay cost, f2 = total use cost
Image of grid of points in  space folds back on itself here – not 
invertible – why?
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Forward and Inverse 
Metamodels:  Key Issues
Easiest to see by plotting values of delay, access costs for two
values of P1 (45%, 46%) as P2 varies from 45% - 80%:
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Forward and Inverse 
Metamodels:  Key Issues

Example:  f1 = network 1 total cost, f2 = network 2 total cost
Functions monotonic in (P1,P2), resulting image of grid does not fold over itself
Strange shape of the image region will affect optimal experiment design 
strategies
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Forward and Inverse 
Metamodels:  Key Issues

Rescaling the responses for homogeneous variance: slope of log s.d. vs log mean 
(Montgomery) or Maximum likelihood with Box-Cox transformations
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Forward and Inverse 
Metamodels:  Key Issues
Key Issues

When the dimension of y does not match the dimension of 
x, how can an inverse function be established?
For the network design example, how to include the total 
costs associated with traffic on network 3?  
Let S = {(s1, s2, s3)} represent the space of total network 
costs where si is the total cost for traffic using network i.  
Since the x-space has dimension 2 (i.e., (P1, P2)), the map 
from (x1, x2) to (s1, s2, s3) generates a surface in S.  If the 
functions are monotonic, any point on this surface can be 
identified uniquely using the pair (s1, s2) or any other pair 
of s’s
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Network Example with Forward Maximin
20 points, Maximin on X for All:  Xmin = 0.38, Ymin = 0.08 

(scaled units: +/-1)

Design in X Space:  Maximin on X Only
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Network Example with Two-Phase 
Forward-Inverse Maximin Strategy

20 Points, 10 Phase 1 Maximin on X, 10 Phase 2 Maximin X and Y:  
Xmin = 0.14, Ymin = 0.14  (scaled units: +/-1)

Design in X Space: Maximin X and Y
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The Benefit of the Combined Design

Xmin = 0.38, Ymin = 0.08 Xmin = 0.14, Ymin = 0.14

Design in Y Space:  Maximin on X Only
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Example D-Optimal Strategies

Barton, Meckesheimer and Simpson (2000) Developed Three 
Combined Forward-Inverse Methods based on D-optimality

Assumptions
k design parameters = p performance measures
Budget = N runs
Nmin = (k + 1)(k + 2)/2 runs are required for quadratic 
metamodel
Functions must be invertible over the region of interest
For Methods 2 and 3, the inverse function cannot be evaluated 
directly
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Example D-Optimal Strategies

Method 1 Assumptions: explicit inverse, requires N ≥ 2Nmin runs 

1. Use N/2 D-optimal forward model runs (X D) to generate image 
points in y-space (Y )

2. Use N/2 D-optimal inverse model runs (Y D) to generate image 
points in x-space (X )

3. Fit the forward metamodel (mf) with {X D, Y } U {X, Y D}, for x in 
X satisfying x є Cx

4. Fit the inverse metamodel (mfinv) with {Y D, X } U {Y, X D}, for y in 
Y satisfying y є Cy
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Example D-Optimal Strategies
Method 2 Assumption: requires N ≥ 2Nmin runs

Use N/2 D-optimal first phase forward model runs (X D) to generate 
image points in y-space (Y 1)
Fit a first phase inverse approximation (mfinv1) with {Y 1, X D}

Use a D-optimal design in y-space (Y D) to identify the image points (X 1) 
with mfinv1

Use N/2 additional forward model runs (X 1) to generate image points in 
y-space (Y 2) which replace (and should approximate) the Y D values

Fit the final forward metamodel (mf) with {X D, Y 1} U {X 1, Y 2},   for x
in X 1 satisfying x є Cx

Fit the final inverse metamodel (mfinv) with {Y 2, X 1} U {Y 1, X D}, for y
in Y 1 and y in Y 2 satisfying x є Cx
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Example D-Optimal Strategies
Method 3 Assumption: requires N ≥ Nmin runs

1. Use N0 ≥ Nmin D-optimal first phase forward runs (X D), generate image points in y-space 
(Y 1)

2. Fit a first phase inverse approximation (mfinv1) with {Y 1, X D}

3. Construct a N - N0 run D-optimal augmentation to the design in y-space (Y D), using all y
in Y 1 satisfying y є Cy

4. Approximate the image points (X 1) of the augmentation (Y D) with mfinv1

5. Use N - N0 additional forward model runs (X 1) to generate image points in y-space (Y 2) 
which replace (and should approximate) the Y D values

6. Fit the final forward metamodel (mf) with {X D, Y 1} U {X 1, Y 2}, for x in X 1 satisfying   
x є Cx

7. Fit the final inverse metamodel (mfinv) with {Y 2, X 1} U {Y 1, X D}, for y in Y 1 and y in 
Y 2 satisfying y є Cy
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Method 3 for k = p = 2 and a 
Quadratic Regression Metamodel

Method 3
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