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Motivation

-1 Form error assessment

- Coordinate Measuring Machine (CMM) properties
o CMM with mechanical touch probe: high-resolution but low-

efficiency

o CMM with optical scanner: low-resolution but high-efficiency

7 How about using both machines to assess the same part?

Roundness form error

—~ Actual part surface
——— Fitted nominal surface

H !
Q touch probe laser
\ / source

manufactured

manufactured ;
workpiece workpiece
Two different probes of CMMs’ 5

Sources of fieure: Liu, O.. Ding. Y., and Chen Y..(2005) .IIE Transactions, 37, 877-889.



Motivated Research Work

Bayesian Hierarchical Model for

Integrating Multi-resolution Data

Model for
single-resolution data

Linkage Model to connect
multi-resolution data

- Low-resolution data model + linkage model

- High-resolution data model + linkage model

Bayesian spatial model for form error
assessment using coordinate measurements




Traditional Methods

7 Minimum zone (MZ) method
7 Orthogonal least squares (OLS) method

- Variants of Minimum zone and OLS methods
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> Usually underestimate the form errors

> Do not consider the estimation uncertainty

> Not account for systematic form error

Dowling, Griffin, Tsui and Zhou, 1997, “Statistics Issues in Geometric Feature Inspection Using Coordinate Measuring Machines,”
Technometrics, Vol. 39, 3-17.
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I Inspirited Spatial Model by

Comguter Eerriments gCEZ

- Analogy between CE and CMM measuring

Inputs n, — Computer Simulation —» Responses (;

meta-model: g, = f(lli )T B TN+e

Inputs: Manufactured parts and | Respnses:
points to measure n, CMM measuring CMM Measurement q;

CMM data model: 4, = f(ni,ﬁ)+1]+8

> N spatially-correlated systematic error; € random error

> In computer experiment, true response surface unknown and
approximated with linear regression model f(n,)' p

> Generally in CMM data model, f(.,.) known from geometry design
and usually nonlinear function 5




I EXiSting work on MOdeIing
Systematic Form Error

1 Sequentially added deterministic components
o Polynomial components (e.g. Yeh, Ni and Hu 1994)
o Fourier components (e.g. Desta, Feng and OuYang 2003)
o B-spline components (e.g.Yang and Menq 1993)

- Stochastic modeling with spatially correlated
component
o Yang and Jackman 2000;Dowling, Griffin and Zhou 1993

Z = f (X, ¥)+n(X, ¥ +e(X, Y,) solve with non-bayesian kriging

o Proposed Bayesian spatial model
(X.,¥:.,2) =f(n,B)+n(n,)+e(n,) solve with Bayesian method




Proposed Method

Domain Knowledge:
Historical data

1 General spatial model to host

Geometric design various geometry features
Engineering knowledge

o Points to measure n,

2 Model parameters p = (0,9)
= Rigid body transformation ¢
= Dimensional size

EBayesia
. spatial
. model

Prior Distribution

+ i
Spatial Model -1 Bayesian prior incorporating

domain knowledge

| q; =f(n;,p) +n(n;) +&(n;) | _ _
] 1 Form error estimate incorporated
uncertainty

Compare with
Improved Form Error Estimate > Tolerance s Acceptance

Requirement Decision




Spatial Model for Form Error

o Multi-variate spatial Model
q; = (X%, yiazi)T =f(n;,8,¢)+n(n;)+&(n;)

o Hulting (1997) : project q; along the approaching
direction of CMM probe, denoted by v;.

o Univariate spatial model

————————————————————————————

____________________________




- Decide approach direction v; and the approaching line

1 Solve equation systems for the intersection point of the
approaching line and the nominal surface with location
shift and simple size change

Nominal surface with no location shift
or shape change

Xia, Ding and Wang, “Bayesian Spatial Model for Form Error Assessment Using Coordinate Measurements ”,

submitted to Technometrics.
Hulting, 1997, “Discussion: Statistics Issues in Geometric Feature Inspection Using Coordinate Measuring 9

Machines,” Technometrics, Vol. 39, 18-20.




Noise Structure

o Random errors  g(-) ~ white noise(0,5?)
0 Systematic errors n(-) ~ Gaussian process(0, Gipo)

cov(n(n;),n(n;)) =c,p,(|n; —n; )

«<-smoothness parameter
p,(m;,n;)= exp{_(\gl |m; —n, )™}

scale parameter

> v, control the correlation decay rate when distance increase

> v, decide the differentiability of sample path; fix v,=1 for this application

Thomas, Best, Lunn, Arnold and Spiegelhalter (2003), Winbugs User Manual, Version 1.4, http://www.mrc-bsu.cam.uk/bugs 10



Choosing Prior Distributions

p(8.9,0;,52,0,) = P(,9) p(c;) p(c2) p(v,)
where

(0,¢) ~ Normal(p, P) rigid body transformation and dimensional parameters

2 - | .
.~ Unif (0,c) variance of systematic errors
z ~Unif (0,c) variance of random errors
v, ~Unif (a,,b,) scale parameter for correlation function

> A simple example of using domain knowledge to build prior distributions

Domain Typical tolerance limits 6 =0.05/3 c=(25)* =0.001
Knowledge for turning: £0.05mm = =

11



Bayesian Inference

1 Posterior distribution
p(ﬁaq)aciacg’ul | Z)
) 1 )
« p(8,9,0,,0,,v,) | V[ exp {_E(Z ~2(8,0))' V'(z-g(8,9))}

where z=W,,..,W, ), V= csf]pUl +o.1, g(8,9)=(f(n,,v,,8,9)" v,)

o1 Posterior predictive distribution

p(z(n,)|z) =
p(z(no) | Zaﬁa(pa 6121963,9 Ul)p(ﬁaq)a 0121»059 U1 | Z)dﬁd([)d GingdUl

9,9,0),,0;,V

o Iy is the location to predict.

o Markov Chain Monte Carlo algorithm for solutions 12



Probabilistic Decision

|

Bayesian Posterior Predictive Distributions

Estimate form error

Compare
with form
tolerance

—

Acceptance
Decision

» Example: roundness form error assessment

............. o / roundness

form error

13



I Model Verification:

Posterior Predictive Checking

0 Test model's consistency - “
With data o.;s— o.zls 0'3:
7 Use all other data to oo
predict “Ieft_out" data 0.05f 0.05 oool
o good fit if the data looks
plausible in the posterior .
predictive distribution N N N
from the model | ” v

Posterior Predictive Checking for Roundness Feature
(red true data vs. yellow prediction histogram)

Gelman, Carlin, Stein and Rubin (2003), Bayesian Data Analysis, 2" edition, Chapman &Hall/CRC, Boca Raton, Florida 14



I Comparison with
Traditional Methods

1 Compare with MZ method and OLS method
o using both simulated CMM data and real CMM data

o Comparison scenarios for simulated data
o Two features: straightness and roundness
o Three process conditions for each feature
o Sample size 8-40
o Comparison criterion: form error estimate/true form error

1 Comparison scenarios for real data
o Two features: straightness and roundness
o One process conditions for each feature
o Sample size 30

15
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Simulated Data-Straightness Cases

-1 Generator equation for straightness features

y = ¢+\ux—%R(x3(L— X)) + Asin(%x)+a

rigid body Surface deflection systematic variation Random noises
transformation

Simulation scenarios for roundness features (unit: mm)

Process characteristics o | v A A R G

Casel | Sine wave dominates (face milling) | .04 | .02 | .04 | 10 | .01 | .01
Case I | Deflection dominates (turning) 051 .01 |.005| 4 |.025].005
Case III | Pure random errors (grinding) 06-01] 0O [NA| 0 |.002

Dowling, Griffin, Tsui and Zhou, 1995, “A Comparison of the Orthogonal Least Squares and Minimum Enclosing Methods for Form
Error Estimation,” Manufacturing Review, Vol. 8, 120-138. 16




1 Generator equation for roundness features

X=X, +(r+Acos(2n/At)+¢€)cost

y=Y,+(r+Acos(2n/At)+¢)sint

rigid body radius

Simulation scenarios for roundness features (unit: mm)

systematic
transformation variation

random
noises

Process characteristics Xo Yo A A r O
Case | Systematic errors dominate (turning) 2 02 | .03 2/3n 25 .006
Case Il | Systematic errors and radius change (turning) | .03 2 .01 23t | 25.03 01
Case III | Pure random errors (turning) 2 .02 0 N/A 25 017

Desta, Feng and OuYang, 2003, “Characterization of general systematic form errors for cicular features,” International Journal of 17
Machine Tools & Manufacture, Vol. 43, 1069-1078.




Straightness Case |

Bayesian Spatial Estimate
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Straightness Case ||

(P10 s ¢

(P17l S ¢}

WU (L

—— = RN NN WL WL AN
(o el S N o Yo o] (N S o Yo o)V ] S N e Yo I8 N \S NN

SO

0.8
0.6
0.4
0.2

0.8
0.6
0.4
0.2

Bayesian Spatial Estimate

==

10 15 20 30 40
Minimum Zone Estimate
[ + —
[ e == = =
n % % - i
T \ \ \ \ !
8 10 15 20 30 40

Orthogonal Least Square Estimate

= =

o]

= = %

sample size

40

19



Straightness Case Il
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Roundness Case |
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Roundness Case |l

Bayesian Spatial Estimate
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Roundness Case |l

Bayesian Spatial Estimate
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Real Data

Form error estimation for the straightness feature

h (mm) 6, (mm) ¢ (mm) ¢ (mm)

Bayesian spatial method .0482 .0034 .0140 -.8866

MZ method .0364 N/A .0140 -.8866

OLS method 0412 .0099 0221 -.8867

Form error estimation for the roundness feature
h (mm) 6, (mm) f (mm) %, (mm) §, (mm)

Bayesian spatial method 0127 0016 12.7541 -.00004 0025

MZ method .0094 N/A 12.7555 .00040 -.0035

OLS method 0109 0023 12.7540 -.00004 -.0026




Conclusion and Future Work

1 Developed Bayesian spatial model for form error

assessment using coordinate measurement

- Demonstrated consistently improved form error

estimate

Bayesian spatial model
for high-resolution data

Linkage Model to connect
multi-resolution data

Bayesian Hierarchical Model for Integrating Multi-
scale and Multi-resolution Data

25
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