Input Uncertainty and Potential-to-Validate: Sampling Plans for Monte Carlo Assessment

Max D. Morris Department of Statistics Department of Industrial and Manufacturing Systems Engineering Iowa State University

> Lisa Moore, Mike McKay Statistical Sciences Group Los Alamos National Laboratory

Knoxville, TN, June 7-9, 2006

# Context

- Deterministic Model:  $y = \mathcal{M}(\mathbf{x})$ 
  - x: input, k-dimensional where k is sometimes large, defining a specific setting/problem/situation ...
  - -y: *output*, the result
- Reality: an observed  $y^R$  resulting from setting  $\mathbf{x}^R$
- Idealized Validation of  $\mathcal{M}$ :
  - Would  $y^R$  match  $\mathcal{M}(\mathbf{x}^R)$ , if we had  $y^R$  and knew  $\mathbf{x}^R$ ?
  - Or, would

$$\Delta(y^R, \mathcal{M}(\mathbf{x}^R))$$

be "small enough", for an appropriate non-negative loss  $\Delta$ ?

## With Measurements, but Uncertain Setting

- If we had  $y^R$  but didn't know  $\mathbf{x}^R$  ...
- Express uncertainty about  $\mathbf{x}^R$  by treating  $\mathbf{x}$  as a random variable with a specified distribution.
- Would

 $E_{\mathbf{x}}\{\Delta(y^R, \mathcal{M}(\mathbf{x}))\}$ 

be "small enough"?

### With Neither Certainty nor Measurements

- Evaluate *Potential-to-Validate* with the most optimistic "fake data" for a given setting.
- Would

$$\underline{E\Delta} = \min_{y^R} E_{\mathbf{x}} \{ \Delta(y^R, \mathcal{M}(\mathbf{x})) \}$$

be "small enough"?

• e.g., for squared-error loss:

$$\underline{E\Delta} = \theta \, Var_{\mathbf{x}} \{ \mathcal{M}(\mathbf{x}) \}$$

the focus of variance-based Uncertainty Analysis (e.g. Saltelli), but the idea works for other  $\Delta$ .

#### Where to Spend Effort Before Validation

• Let  $\mathbf{x} = (x_i, \mathbf{x}_{(i)})$ . What would the potential-to-validate be if uncertainty about  $x_i$  were eliminated?

$$\min_{y_i^R} E_{\mathbf{x}_{(i)}|x_i} \{ \Delta(y_i^R, \mathcal{M}(x_i, \mathbf{x}_{(i)})) \}$$

• Or, in the current absence of certainty about  $x_i$ ,

$$\underline{E\Delta}_{(i)} = E_{x_i} \min_{y_i^R} E_{\mathbf{x}_{(i)}|x_i} \{ \Delta(y_i^R, \mathcal{M}(x_i, \mathbf{x}_{(i)})) \}$$

• e.g., for squared-error loss:

$$\underline{E\Delta}_{(i)} = \theta E_{x_i} Var_{\mathbf{x}_{(i)}|x_i} \{ \mathcal{M}(x_i, \mathbf{x}_{(i)}) \} = \theta T_{(i)}$$

where  $T_{(i)}$  is expected conditional variance, or "total variance" (e.g. Saltelli) associated with  $\mathbf{x}_{(i)}$ .

#### Simulation-Based Estimation of <u>E</u> $\Delta$ and <u>E</u> $\Delta_{(i)}$

- Will need independent distn's for each input.
- $\underline{E\Delta}_{(i)}$  = average  $\underline{E\Delta}$  with  $x_i$  fixed and  $\mathbf{x}_{(i)}$  varying, where "average" is over randomly chosen values of  $x_i$ .
- Will need groups of model runs that have the same (randomly chosen)  $x_i$  value, but different (randomly chosen) values for the other inputs.
- Potential-to-Validate is most improved by eliminating uncertainty in inputs  $x_i$  for which  $\underline{E\Delta}_{(i)}$  is smallest (equivalently,  $T_{(i)}$  for squared-error loss).



#### Sobol': 1990, 1993 translation

$$\begin{bmatrix} \cdot & \cdot & \cdot \\ \mathbf{x}_{1}^{1} \ \mathbf{x}_{2}^{1} \cdots \ \mathbf{x}_{k}^{1} \\ \cdot & \cdot & \cdot \end{bmatrix}_{n}^{\leftrightarrow} \begin{bmatrix} \cdot & \cdot & \cdot \\ \mathbf{x}_{1}^{1} \ \mathbf{x}_{2}^{2} \cdots \ \mathbf{x}_{k}^{2} \\ \cdot & \cdot & \cdot \end{bmatrix}_{n}^{\leftrightarrow} \begin{bmatrix} \cdot & \cdot & \cdot \\ \mathbf{x}_{1}^{1} \ \mathbf{x}_{2}^{a} \cdots \ \mathbf{x}_{k}^{a} \\ \cdot & \cdot & \cdot \end{bmatrix}_{n}^{\rightarrow} \underbrace{\widehat{E\Delta}}_{n} | x_{1} \\ \cdot & \cdot & \cdot \end{bmatrix}_{n}^{\rightarrow} \underbrace{\widehat{E\Delta}}_{n} | x_{1} \\ \stackrel{\downarrow}{\widehat{E\Delta}}_{(1)}$$

• d.f. =  $n \times (a - 1)$   $N = n \times (1 + k \times (a - 1))$ 

• "efficiency"  $\approx k^{-1}$ , d.f. per model evaluation

•  $\underline{E\Delta}$  is estimable from the runs in any one array

#### "Substituted Column Arrays"

Example: k=3 inputs, a=2 arrays, n=4 runs/array,  $x_i \sim \text{unif}[0,1]$  $\Delta = (y^R - \mathcal{M}(\mathbf{x}))^2, \underline{E\Delta}_{(i)} = \text{average } S^2(y) \dots$ 

| ſ | $x_1$                     | $x_2$ | $x_3$ | y    |                   | $x_1$ | $x_2$ | $x_3$ | y -  |               | $S^2(y)$     |
|---|---------------------------|-------|-------|------|-------------------|-------|-------|-------|------|---------------|--------------|
|   | .03                       | .11   | .82   | 0.96 | $\leftrightarrow$ | .03   | .53   | .09   | 0.65 | $\rightarrow$ | .0240        |
|   | .11                       | .06   | .69   | 0.86 | $\leftrightarrow$ | .11   | .76   | .13   | 1.00 | $\rightarrow$ | .0049        |
|   | .37                       | .87   | .46   | 1.70 | $\leftrightarrow$ | .37   | .77   | .84   | 1.96 | $\rightarrow$ | .0169        |
|   | .79                       | .51   | .58   | 1.88 | $\leftrightarrow$ | .79   | .41   | .37   | 1.57 | $\rightarrow$ | .0240        |
|   |                           |       |       |      |                   |       |       |       |      |               | $\downarrow$ |
|   |                           |       |       |      |                   |       |       |       |      |               | .0175        |
|   | • $\hat{T}_{(1)} = .0175$ |       |       |      |                   |       |       |       |      |               |              |

## "Balanced Replication Arrays"

Based on the pattern of a Balanced Incomplete Block Design, where each pair of treatments appear together in exactly one block, e.g.

"blocks"



## "Balanced Replication Arrays"

- construct a independent arrays in this pattern, average  $\underline{\widehat{E\Delta}}|x_i$  values, one from each array.
- d.f. =  $a \times (u 1)$ , where u is the blocksize of the BIBD
- $N = a \times n$
- "efficiency"  $\approx k^{-\frac{1}{2}}$
- $\underline{E\Delta}$  is estimable from the corresponding runs across arrays

• System of 8 equations for 8 species densities:

$$N_{1}'(t) = N_{1}(t) \frac{r_{1}}{K_{1}} [(K_{1} - N_{1}(t)) - \sum_{m \neq 1} \alpha_{1m} N_{m}(t)]$$

$$N_{i}'(t) = N_{i}(t) \frac{r_{i}}{K_{i}} [(K_{i} - N_{i}(t)) - \sum_{m \neq i} \alpha_{im} N_{m}(t)] - \beta N_{i}(t), \quad i \neq 1$$

$$\alpha_{i,j} = 1.2, \quad j > i + 1 \quad \alpha_{i,j} = 0.2, \quad j \leq i + 1$$

$$r_{i} = 1.0, \quad i = 1...8 \qquad \beta = 0.5$$

$$\underbrace{\text{species}(i) \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8}_{K_{i}} \quad 20 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1$$

• 
$$N_1(0) = 0.5$$
,  $x_i = N_{i+1}(0) \sim \text{unif}[0.1, 0.2], i = 1...7$ 

- $\bullet \ y = N_1(5)$
- Asymmetric Linear Loss:

$$\Delta(y^R, \mathcal{M}(\mathbf{x})) = [\mathcal{M}(\mathbf{x}) - y^R], \quad \mathcal{M}(\mathbf{x}) > y^R$$
$$2 \times [y^R - \mathcal{M}(\mathbf{x})], \quad \mathcal{M}(\mathbf{x}) \le y^R$$

• For 
$$y_j = \mathcal{M}(x_i, \mathbf{x}_{(i),j})$$
  $j = 1 \dots m$   
 $argmin_{y^R} ave_{y_j} \Delta(y^R, y_j) = y^* \in \{y_1, y_2, y_3, \dots, y_m\}$ 

• Estimated 
$$\underline{E\Delta}|x_i$$
:

$$\frac{1}{m} \left[ \sum_{y_j > y^*} (y_j - y^*) + 2 \sum_{y_j < y^*} (y^* - y_j) \right]$$

Example: k=7 inputs, 7 runs/array, one of a=50 arrays

| —      |        |        |        |        |        |        | . –    | -             |
|--------|--------|--------|--------|--------|--------|--------|--------|---------------|
| $x_1$  | $x_2$  | $x_3$  | $x_4$  | $x_5$  | $x_6$  | $x_7$  | y      |               |
| .18397 | .11297 | .14310 | .15244 | .15358 | .11940 | .13649 | 13.882 | ←             |
| .18397 | .13505 | .17935 | .18486 | .14569 | .10225 | .19577 | 13.696 | <i>←</i>      |
| .18623 | .13505 | .11565 | .10929 | .14873 | .16611 | .13649 | 13.954 |               |
| .18397 | .14136 | .11565 | .10374 | .11559 | .14043 | .10785 | 14.006 | <del>~~</del> |
| .18330 | .13505 | .14591 | .10374 | .15358 | .19171 | .18767 | 13.872 |               |
| .13476 | .15396 | .11565 | .15036 | .15358 | .10225 | .18158 | 13.864 |               |
| .11169 | .11994 | .18742 | .10374 | .17219 | .10225 | .13649 | 13.856 |               |

- must repeat this pattern, with new random draws for a arrays
- $\underline{\widehat{E\Delta}}_{(1)}$  computed as the average of  $\underline{\widehat{E\Delta}}|x_1$  values from groups as depicted above, et cetera.
- standard errors are the corresponding standard deviations of  $\widehat{\underline{E\Delta}}|x_1$  values, divided by  $\sqrt{a}$ .

- $\widehat{\underline{E\Delta}} = 0.2592$ , an average of 7 indices each based on m=50.
- $\underline{\widehat{E\Delta}}_{(i)}$ , each an average of 50 indices each based on m=3.

| species                               | 2      | 3      | 4      | 5      | 6      | 7      | 8      |
|---------------------------------------|--------|--------|--------|--------|--------|--------|--------|
| $\widehat{\underline{E\Delta}}_{(i)}$ | 0.1005 | 0.0746 | 0.0898 | 0.0875 | 0.1109 | 0.1047 | 0.0938 |
| std. err.                             | 0.0076 | 0.0063 | 0.0066 | 0.0066 | 0.0081 | 0.0078 | 0.0072 |

• units = N

#### Summary and Conclusion

- Potential-to-Validate, in the presence of input uncertainty, is directly related to probabilistic S/U analysis.
- BIBD-based input sampling arrays are an alternative to SCA's that are more efficient in many cases:
  - Morris, M., L. Moore, and M. McKay. Sampling Plans Based on Incomplete Block Designs for Evaluating the Importance of Computer Model Inputs. *Journal of Statistical Planning and Inference*, in press.
- $\bullet$  Overview of sampling-based methods in S/U analysis:
  - Saltelli, A., K. Chan, and M. Scott (eds.) Sensitivity Analysis. John Wiley and Sons, New York.