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Context

• Deterministic Model: y =M(x)

– x: input, k-dimensional where k is sometimes large, defining
a specific setting/problem/situation ...

– y: output, the result

• Reality: an observed yR resulting from setting xR

• Idealized Validation of M:

– Would yR match M(xR), if we had yR and knew xR?

– Or, would
Δ(yR,M(xR))

be “small enough”, for an appropriate non-negative loss Δ?
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With Measurements, but Uncertain Setting

• If we had yR but didn’t know xR ...

• Express uncertainty about xR by treating x as a random
variable with a specified distribution.

• Would
Ex{Δ(yR,M(x))}

be “small enough”?



JRC 06 4�

�

�

�

With Neither Certainty nor Measurements

• Evaluate Potential-to-Validate with the most optimistic “fake
data” for a given setting.

• Would
EΔ = minyR Ex{Δ(yR,M(x))}

be “small enough”?

• e.g., for squared-error loss:

EΔ = θ V arx{M(x)}

the focus of variance-based Uncertainty Analysis (e.g. Saltelli),
but the idea works for other Δ.
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Where to Spend Effort Before Validation

• Let x = (xi,x(i)). What would the potential-to-validate be if
uncertainty about xi were eliminated?

minyR
i

Ex(i)|xi
{Δ(yR

i ,M(xi,x(i)))}

• Or, in the current absence of certainty about xi,

EΔ(i) = Exi minyR
i

Ex(i)|xi
{Δ(yR

i ,M(xi,x(i)))}

• e.g., for squared-error loss:

EΔ(i) = θ Exi
V arx(i)|xi

{M(xi,x(i))} = θ T(i)

where T(i) is expected conditional variance, or “total variance”
(e.g. Saltelli) associated with x(i).
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Simulation-Based Estimation of EΔ and EΔ(i)

• Will need independent distn’s for each input.

• EΔ(i) = average EΔ with xi fixed and x(i) varying, where
“average” is over randomly chosen values of xi.

• Will need groups of model runs that have the same (randomly
chosen) xi value, but different (randomly chosen) values for the
other inputs.

• Potential-to-Validate is most improved by eliminating
uncertainty in inputs xi for which EΔ(i) is smallest
(equivalently, T(i) for squared-error loss).
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“Substituted Column Arrays”

Sobol’: 1990, 1993 translation
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ÊΔ|x1
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• d.f. = n× (a− 1) N = n× (1 + k × (a− 1))

• “efficiency” ≈ k−1, d.f. per model evaluation

• EΔ is estimable from the runs in any one array
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“Substituted Column Arrays”

Example: k=3 inputs, a=2 arrays, n=4 runs/array, xi ∼ unif[0,1]

Δ = (yR −M(x))2, EΔ(i) = average S2(y) ...

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 y

.03 .11 .82 0.96

.11 .06 .69 0.86

.37 .87 .46 1.70

.79 .51 .58 1.88

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

↔
↔
↔
↔

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 y

.03 .53 .09 0.65

.11 .76 .13 1.00

.37 .77 .84 1.96

.79 .41 .37 1.57

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

→
→
→
→

S2(y)

.0240

.0049

.0169

.0240

↓
.0175

• T̂(1) = .0175
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“Balanced Replication Arrays”

Based on the pattern of a Balanced Incomplete Block Design, where
each pair of treatments appear together in exactly one block, e.g.

“blocks”

“treatments”

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

• • •
• • •
• • •

• • •
• • •
• • •
• • •

⎤
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← �
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“Balanced Replication Arrays”

• construct a independent arrays in this pattern, average ÊΔ|xi

values, one from each array.

• d.f. = a× (u− 1), where u is the blocksize of the BIBD

• N = a× n

• “efficiency” ≈ k−
1
2

• EΔ is estimable from the corresponding runs across arrays
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Example: Species Competition

• System of 8 equations for 8 species densities:

N ′1(t) = N1(t) r1
K1

[ (K1 −N1(t))−
∑

m�=1 α1mNm(t) ]

N ′i(t) = Ni(t) ri

Ki
[ (Ki −Ni(t))−

∑
m�=i αimNm(t) ]− βNi(t), i 
= 1

αi,j = 1.2, j > i + 1 αi,j = 0.2, j ≤ i + 1

ri = 1.0, i = 1...8 β = 0.5

species(i) 1 2 3 4 5 6 7 8

Ki 20 7 6 5 4 3 2 1
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Example: Species Competition

• N1(0) = 0.5 , xi = Ni+1(0) ∼ unif[0.1, 0.2], i = 1...7

• y = N1(5)

• Asymmetric Linear Loss:

Δ(yR,M(x)) = [M(x)− yR], M(x) > yR

2× [yR −M(x)], M(x) ≤ yR

• For yj = M(xi,x(i),j) j = 1 ... m

argminyR aveyj Δ(yR, yj) = y∗ ∈ {y1, y2, y3, ..., ym}
• Estimated EΔ|xi:

1
m

[
∑

yj>y∗
(yj − y∗) + 2

∑
yj<y∗

(y∗ − yj)]
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Example: Species Competition

Example: k=7 inputs, 7 runs/array, one of a=50 arrays⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4 x5 x6 x7 y

.18397 .11297 .14310 .15244 .15358 .11940 .13649 13.882

.18397 .13505 .17935 .18486 .14569 .10225 .19577 13.696

.18623 .13505 .11565 .10929 .14873 .16611 .13649 13.954

.18397 .14136 .11565 .10374 .11559 .14043 .10785 14.006

.18330 .13505 .14591 .10374 .15358 .19171 .18767 13.872

.13476 .15396 .11565 .15036 .15358 .10225 .18158 13.864

.11169 .11994 .18742 .10374 .17219 .10225 .13649 13.856

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

←
←

←

• must repeat this pattern, with new random draws for a arrays

• ÊΔ(1) computed as the average of ÊΔ|x1 values from groups
as depicted above, et cetera.

• standard errors are the corresponding standard deviations of
ÊΔ|x1 values, divided by

√
a.
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Example: Species Competition

• ÊΔ = 0.2592, an average of 7 indices each based on m=50.

• ÊΔ(i), each an average of 50 indices each based on m=3.

species 2 3 4 5 6 7 8

ÊΔ(i) 0.1005 0.0746 0.0898 0.0875 0.1109 0.1047 0.0938

std. err. 0.0076 0.0063 0.0066 0.0066 0.0081 0.0078 0.0072

• units = N
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Summary and Conclusion

• Potential-to-Validate, in the presence of input uncertainty, is
directly related to probabilistic S/U analysis.

• BIBD-based input sampling arrays are an alternative to SCA’s
that are more efficient in many cases:

– Morris, M., L. Moore, and M. McKay. Sampling Plans
Based on Incomplete Block Designs for Evaluating the
Importance of Computer Model Inputs. Journal of
Statistical Planning and Inference, in press.

• Overview of sampling-based methods in S/U analysis:

– Saltelli, A., K. Chan, and M. Scott (eds.) Sensitivity
Analysis. John Wiley and Sons, New York.


