

Local Vote Decision Fusion for Target Detection in Wireless Sensor Networks.

Natallia Katenka

Joint work with Liza Levina and George Michailidis

Department of Statistics, University of Michigan - Ann Arbor

http://www.stat.lsa.umich.edu

Introduction and Problem

Formulation

O Wireless Sensor Network

(WSN)

• Applications of WSN

C Target Detection

O Problem Formulation

Example

Decision Fusion: Algorithms and Analysis

Performance Evaluation

Concluding remarks

Introduction and Problem Formulation

Wireless Sensor Network (WSN)

Introduction and Problem Formulation

(WSN)

• Applications of WSN

Target Detection

• Problem Formulation

C Example

Decision Fusion: Algorithms and Analysis

Performance Evaluation

Concluding remarks

▲ Large number of small, inexpensive, low-power sensors

- Can be deployed in a regular pattern (e.g. grid) or at random ("smart dust")
- ▲ Sensors communicate with other sensors and remote center
- Sensors collect information about the surrounding environment
- ▲ Sensors have some data processing capabilities
- Fusion center processes data from sensors and makes a global (and more precise) situational assessment

Applications of WSN

Introduction and Problem Formulation • Wireless Sensor Network (WSN)

• Applications of WSN

Target Detection

• Problem Formulation

Example

Decision Fusion: Algorithms and Analysis

Performance Evaluation

Concluding remarks

- ▲ Environmental monitoring (endangered species, agriculture)
 - Security (surveillance, intruder detection)

Constraints

Low power: minimize data processing and communications costs

▲ Communication to center expensive ⇒ distributed algorithms Major design issues

- Coverage \Rightarrow theory of coverage processes
- ▲ Connectivity ⇒ random graphs theory
- ▲ Localization (use of GPS, anchor nodes) \Rightarrow MDS, etc.
- ▲ Reliability

Introduction and Problem Formulation C Wireless Sensor Network (WSN) C Applications of WSN Target Detection C Problem Formulation C Example Decision Fusion: Algorithms and Analysis

Performance Evaluation

- ▲ Detect and characterize targets in the monitored area
- Assume communication issues are resolved separately (connectivity, transmission protocols, etc)
- Assume sensor locations are known or can be estimated accurately
- ▲ Here focus on detection of a single target

Problem Formulation

Introduction and Problem Formulation • Wireless Sensor Network (WSN) • Applications of WSN • Target Detection

• Problem Formulation

• Example

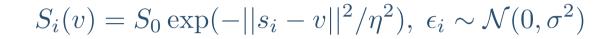
Decision Fusion: Algorithms and Analysis

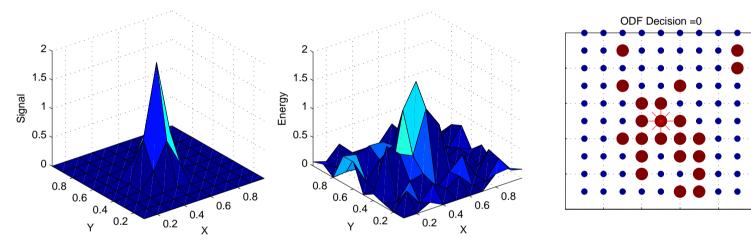
Performance Evaluation

Concluding remarks

- N sensors deployed over monitored region R (WLOG unit square)
- A target at location v emits signal with amplitude S_0
- A Sensor *i* located at s_i gets energy readings

 $E_i = S_i + \epsilon_i = S_0 c(\|v - s_i\|, \eta) + \epsilon_i,$


- where $c(\cdot)$ is a monotone signal decay function
- ϵ_i is random noise; assume ϵ_i are i.i.d.
- ▲ Each sensor makes a decision


$$d_i = \mathbf{1}(E_i \ge \tau)$$

▲ The sensor's false alarm probability α is assumed known (prior information on noise or hardware); v, S_0 , η unknown

Example: exponentially decaying signal model

Introduction and Problem Formulation © Wireless Sensor Network (WSN) © Applications of WSN © Target Detection © Problem Formulation © Example Decision Fusion: Algorithms and Analysis Performance Evaluation

Introduction and Problem Formulation

Decision Fusion: Algorithms and Analysis

C Decision Fusion

O Decision fusion: long

history

C Local Vote Decision Fusion

(LVDF) ODF vs LVDF

CLVDF: threshold selection

 ${\ensuremath{ \bullet}}$ A normal approximation for

the false alarm

Calculating Covariance

Comments on the

approximation

Performance Evaluation

Concluding remarks

Decision Fusion: Algorithms and Analysis

Introduction and Problem Formulation

Decision Fusion: Algorithms and Analysis

C Decision Fusion

Decision fusion: long history

C Local Vote Decision Fusion (LVDF)

ODF vs LVDF

- CLVDF: threshold selection
- A normal approximation for
- the false alarm
- Calculating Covariance
- Comments on the
- approximation

Performance Evaluation

Concluding remarks

A Only positive decisions d_i are transmitted to fusion center

Low communication cost

More robust to noise Ordinary Decision Fusion (ODF):

- Fusion center makes the final decision $\mathbf{1}(\sum_{i=1}^{N} d_i \ge T)$
- A Key issue: must choose T to control system-wide false alarm F
- \blacktriangle Decisions d_i are i.i.d., so

$$F = \sum_{i=T}^{N} \binom{N}{i} \alpha^{i} (1-\alpha)^{N-i} \approx 1 - \Phi\left(\frac{T-N\alpha}{\sqrt{N\alpha(1-\alpha)}}\right)$$

Decision fusion: long history

Introduction and Problem Formulation Decision Fusion: Algorithms and Analysis O Decision Fusion

C Decision fusion: long

 history
 Local Vote Decision Fusion (LVDF)

ODF vs LVDF

CLVDF: threshold selection

• A normal approximation for

the false alarm

Calculating Covariance

 Comments on the approximation

Performance Evaluation

Concluding remarks

Early decision fusion algorithms: radar array applications

• Studied replacing $\sum_{i=1}^{N} d_i$ with $\sum_{i=1}^{N} w_i d_i$

Classical decision theory can be applied if false alarm and detection probabilities are known for all sensors - unrealistic for WSN

Modern algorithms for WSN:

▲ ad hoc modifications of d_i by various "quality" measures (e.g., level of neighborhood agreement) improve detection

• no performance guarantees (cannot choose T to guarantee F)

Local Vote Decision Fusion (LVDF)

Introduction and Problem Formulation

Decision Fusion: Algorithms

and Analysis

Decision Fusion

 Decision fusion: long history

C Local Vote Decision Fusion (LVDF)

ODF vs LVDF

LVDF: threshold selection

C A normal approximation for

the false alarm Calculating Covariance

Comments on the

approximation

Performance Evaluation

Concluding remarks

1. Sensor *i* makes an initial decision d_i and communicates it to all sensors in its neighborhood U(i).

2. Given the set of decisions $\{d_j : j \in U(i)\}$, sensor *i* adjusts its initial decision according to a majority vote:

$$Z_i = \mathbf{1}(\sum_{j \in U(i)} d_j > M_i/2),$$

where $M_i = |U(i)|$ is the size of the neighborhood.

3. The fusion center makes the final decision

$$\mathbf{1}(\sum_{i=1}^N Z_i \ge T_\ell).$$

In practice, sensors only transmit positive decisions in steps 1 and 3.

Introduction and Problem

Formulation

Decision Fusion: Algorithms

and Analysis

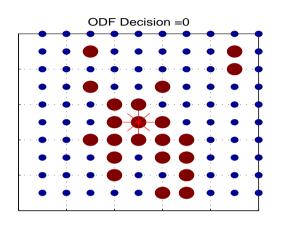
Decision Fusion

Decision fusion: long history

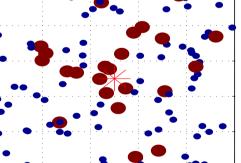
• Local Vote Decision Fusion (LVDF)

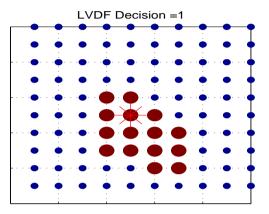
ODF vs LVDF

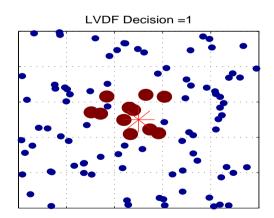
CLVDF: threshold selection


• A normal approximation for the false alarm

Calculating Covariance


 $\ensuremath{\mathfrak{O}}$ Comments on the


approximation


Performance Evaluation

LVDF: threshold selection

Introduction and Problem	
Formulation	

- Decision Fusion: Algorithms and Analysis
- Decision Fusion
- C Decision fusion: long
- history
- Local Vote Decision Fusion (LVDF)
- ODF vs LVDF
- CLVDF: threshold selection
- A normal approximation for the false alarm
 Calculating Covariance
- Comments on the approximation

Performance Evaluation

Concluding remarks

Goal: a central limit theorem for the modified decisions Z_i

- \blacktriangle Z_i are binary, non-identically distributed, and weakly dependent
- Regular grids: adapted from CLT for non-stationary α -mixing random fields (Guyon, 1995).
- Random deployment: adapted from CLT for functionals of marked Poisson and binomial point processes (Penrose & Yukich, 2001, 2002).

▲ Some care needed in taking limits as $N \to \infty$, region R remains fixed.

A normal approximation for the false alarm

Introduction and Problem Formulation

Let
$$n_{ij} = |U(i) \cap U(j)|$$
. Z_i and Z_j are dependent iff $n_{ij} > 0$

Decision Fusion: Algorithms

and Analysis

Decision Fusion

O Decision fusion: long

history

C Local Vote Decision Fusion (LVDF)

ODF vs LVDF

CLVDF: threshold selection

• A normal approximation for the false alarm

Calculating Covariance

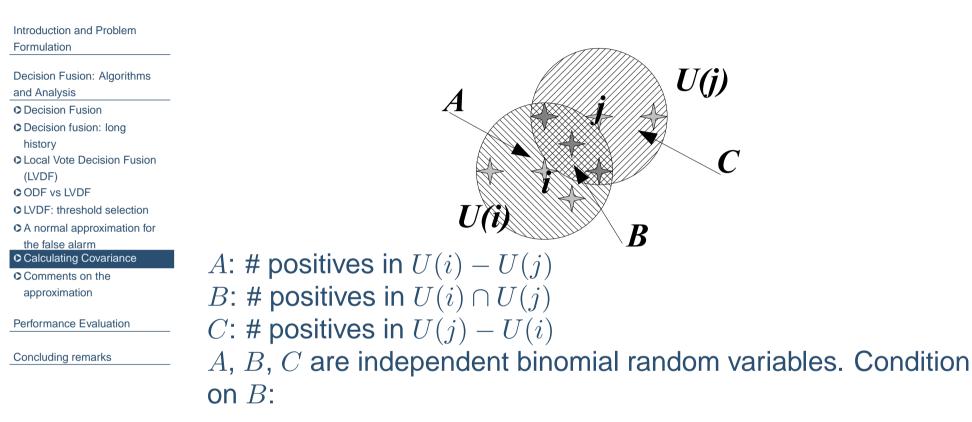
Comments on the

approximation

Performance Evaluation

 μ_i

Concluding remarks


$$F = P\left(\sum_{i=1}^{N} Z_i \ge T_\ell\right) \approx 1 - \Phi\left(\frac{T_l - \sum_{i=1}^{N} \mu_i}{\sqrt{\sum_{i=1}^{N} \sigma_i^2 + \sum_{i \ne j, n_{ij} > 0} \operatorname{Cov}(Z_i, Z_j)}}\right)$$

• Mean and variance are easy (binomial):

$$= E(Z_i) = P(Z_i = 1) = \sum_{k=[M_i/2]+1}^{M_i} {\binom{M_i}{k}} \alpha^k (1-\alpha)^{M_i-k},$$

$$\sigma_i^2 \quad = \quad \operatorname{Var}(Z_i) = \mu_i (1 - \mu_i),$$

$$E(Z_i Z_j) = \sum_{k=0}^{n_{ij}} P(B=k) P(A > \frac{M_i}{2} - k) P(C > \frac{M_j}{2} - k).$$

Comments on the approximation

Introduction and Problem
Formulation

- Decision Fusion: Algorithms
- and Analysis
- Decision Fusion
- Decision fusion: long
- history
- C Local Vote Decision Fusion (LVDF)
- ODF vs LVDF
- CLVDF: threshold selection
- A normal approximation for
- the false alarm
- Calculating Covariance

Comments on the approximation

Performance Evaluation

- ▲ Quite accurate even for moderate *N*; worsens as *M* gets larger
- Simplifies significantly for regular grids
- ▲ For random deployments, depends on locations but
 - depends on locations only through the distribution of M_i ,
 - n_{ij}
 - error essentially the same if approximation is computed from one arbitrary deployment of *N* sensors
 - hence localization can be avoided

Introduction and Problem Formulation

Decision Fusion: Algorithms and Analysis

Performance Evaluation

Performance Evaluation
Probability of detection as a function of SNR
Probability of detection as a function of false alarm (ROC)
Choosing the size of the neighborhood
Sequential Decision Fusion (SDF)
Performance evaluation for SDF

Concluding remarks

Performance Evaluation

Introduction and Problem
Formulation

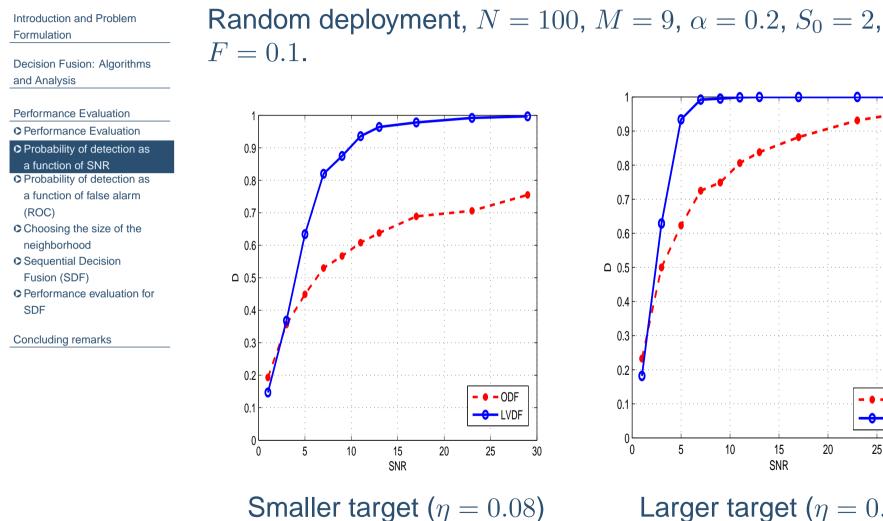
The signal model is

Decision Fusion: Algorithms and Analysis

Performance Evaluation

- C Performance Evaluation
- Probability of detection as a function of SNR
 Probability of detection as a function of false alarm (ROC)
- Choosing the size of the neighborhood
- Sequential Decision
- Fusion (SDF)
- Performance evaluation for SDF

Concluding remarks


 $S_i = S_0 \exp(-||s_i - v||^2 / \eta^2), \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$

Same pattern for

- regular grids and random deployments
- ▲ distance-based and nearest neighbors based neighborhoods

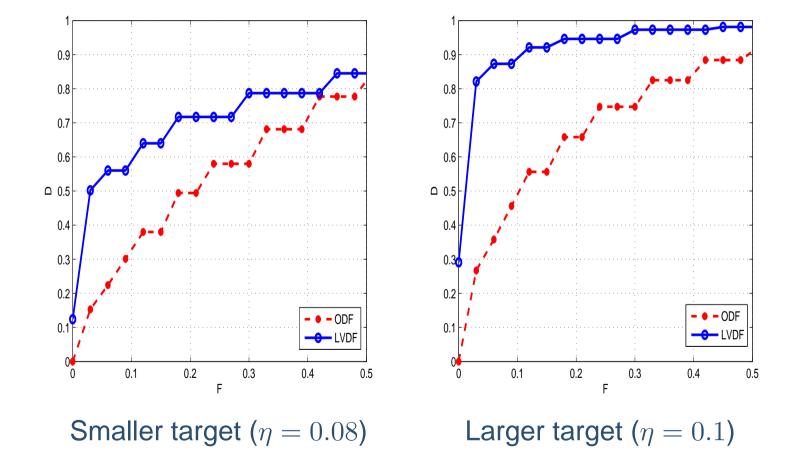
▲ a range of N, α , F, η , SNR= S_0/σ .

Probability of detection as a function of **SNR**

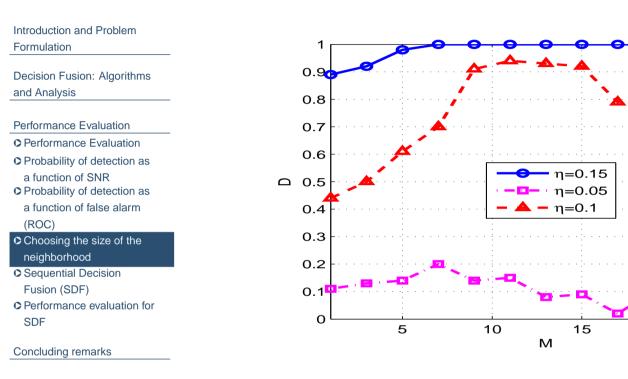
0.9 0.8 0.7 0.6 □ 0.5 0.4 0.3 0.2 - • - ODF 0.1 ----- LVDF 5 15 25 30 0 10 20 SNR

Larger target ($\eta = 0.1$)

Probability of detection as a function of false alarm (ROC)


Introduction and Problem	
Formulation	

Decision Fusion: Algorithms and Analysis


- Performance Evaluation
 Performance Evaluation
 Probability of detection as a function of SNR
 Probability of detection as a function of false alarm (ROC)
 Choosing the size of the neighborhood
- Sequential Decision
 Fusion (SDF)
- Performance evaluation for SDF

Concluding remarks

Random deployment, N = 100, M = 9, $\alpha = 0.2$, $S_0 = 2$, SNR=5.

Choosing the size of the neighborhood

Choose neighborhood size similar to the size of the smallest target to be detected (subject to grid resolution)

20

25

Sequential Decision Fusion (SDF)

Introduction and Problem Formulation

Decision Fusion: Algorithms and Analysis

Performance Evaluation
Performance Evaluation
Probability of detection as a function of SNR
Probability of detection as a function of false alarm (ROC)
Choosing the size of the

neighborhood Sequential Decision

Fusion (SDF)

• Performance evaluation for SDF

Concluding remarks

▲ Decisions collected over time t = 0, 1, ...; target moves slowly relative to the rate of time sampling

• Fusion center stores corrected LVDF decisions
$$Z_i^t$$

 Propose new decision algorithm: exponential moving average

$$Y_{i}^{0} = Z_{i}^{0},$$

$$Y_{i}^{t} = \lambda Z_{i}^{t} + (1 - \lambda) Y_{i}^{t-1}, t = 1, 2, \dots$$

• Networks decision at time t is $\mathbf{1}\left(\sum_{i=1}^{N} Y_{i}^{t} \geq \tilde{T}_{\ell}\right)$.

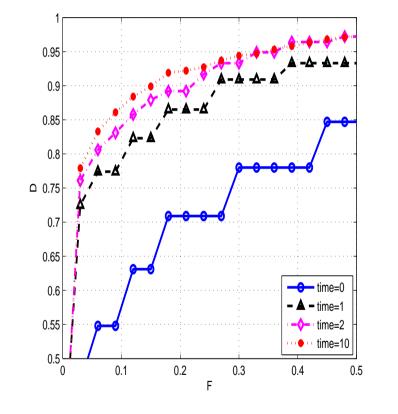
▲ If noise is i.i.d. over time,

$$\tilde{T}_{\ell} = \sqrt{\frac{\lambda}{2-\lambda}} T_{\ell}$$

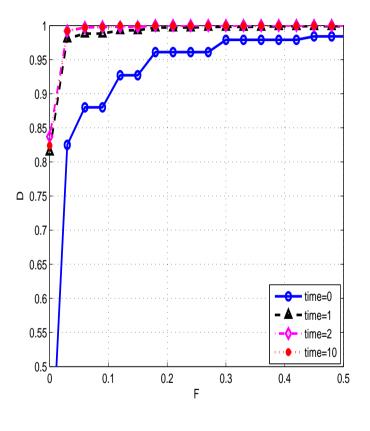
Robust to moderate temporal correlations

Performance evaluation for SDF

Introduction and Problem Formulation


Decision Fusion: Algorithms and Analysis

Performance Evaluation
Performance Evaluation
Probability of detection as a function of SNR
Probability of detection as a function of false alarm (ROC)
Choosing the size of the neighborhood
Sequential Decision Fusion (SDF)
Performance evaluation for


Concluding remarks

SDF

• stationary target, N = 100 randomly deployed sensors

Smaller target ($\eta = 0.08$)

Larger target ($\eta = 0.1$)

Introduction and Problem Formulation

Decision Fusion: Algorithms and Analysis

Performance Evaluation

Concluding remarks

Concluding remarks

Introduction and Problem	
Formulation	

Decision Fusion: Algorithms and Analysis

Performance Evaluation

Concluding remarks Concluding remarks

Local Vote Decision Fusion

- increases detection probability and works well at low SNR
- ▲ particularly large gains for well-localized signals
- saves energy (fewer false positives sent to the fusion center)
- ▲ theoretical guarantees for the system false alarm Other interesting problems (in progress)
- ▲ Target localization
- ▲ Estimation of target and environment parameters
- ▲ Tracking a target over time
- ▲ Multiple targets (detection and classification)