Robust Design of Chemical Processes under Uncertainty through Stochastic Optimization

Luis F. Dominguez Palomeque

Project Supervisor : Dr. David McLean Chemical Engineering Department University of Ottawa June 7, 2006

uOttawa

L'Université canadienne Canada's university

© Luis Dominguez, 2006

Introduction

Robustness

A process is said to be robust if it is capable of dealing with variability in its inputs.

Robust Parameter Design Methodology (Taguchi)

Used to identify the setting of variables that make the product or process more robust to input variation

© Luis Dominguez, 2006

Limitations

- No physical process thus limiting experimentation.
- High capital cost for prototypes and pilot plants.
- □ High operating cost for multiple runs.
- Mean and variance of quality variable must be independent.

© Luis Dominguez, 2006

Stochastic Approach

An alternative approach to robust parameter design is to couple an optimizer directly with a computer simulation model using stochastic descriptions of the noise factors.

Estimating Expected Values Via Sampling

Monte Carlo Methods

Distribution of 100 Sample Points from a Uniform Distribution in a 2-Dimensional Unit Space

Monte Carlo Sampling (MCS) Latin Hypercube Sampling (LSS) Hammersley Sequence Sampling (HSS)

© Luis Dominguez, 2006

Design of a Continuous Stirred-Tank Reactor

Boudriga (1990); Diwekar and Kalagnanam (1997)

Objectives:

$$\begin{split} P_{\rm B} &= r_{\rm B} V = 60 \mbox{ mol}/\mbox{min} & (\mbox{Target}) \\ V \mbox{ariance} &= \sigma_{\rm R_{\rm B}}^2 & (\mbox{Minimum}) \end{split}$$

Uncertain Variables:

- Inlet Concentrations (C_{Ai}, C_{Bi})
- Inlet Temperature (T_i)
- Reactor Volume (V)
- Flow rate (F)
- Heat Input (Q)

Decision Variables: Nominal Values of uncertain variables

$$\mu_{C_{Ai}}$$
 $\mu_{C_{Bi}}$, μ_{Ti} , μ_V , μ_F , μ_Q

Dept. of Chem. Eng., University of Ottawa

© Luis Dominguez, 2006

Design Equations

Equality Constraints (Material and Energy Balance)

$$\tau = \frac{V}{F}$$

$$C_{A} = \frac{C_{Ai}}{1 + k_{A}^{0} e^{-E_{A}/RT} \tau}$$

$$C_{B} = \frac{C_{Bi} + k_{A}^{0} e^{-E_{A}/RT} C_{A}}{1 + k_{B}^{0} e^{-E_{B}/RT} \tau}$$

$$-r_{A} = k_{A}^{0} e^{-E_{A}/RT} C_{A}$$

$$-r_{B} = k_{B}^{0} e^{-E_{B}/RT} C_{B} - k_{A}^{0} e^{-E_{A}/RT} C_{A}$$

$$Q = F\rho C_{P} (T - T_{i}) + V(r_{A}H_{RA} + r_{B}H_{RB})$$

 $r_{_{\rm B}}V = 60$

Inequality Constraints

(Process constraints)

$$\begin{split} & 1000 \leq \mu_{\text{CAi}} \leq 5000 \\ & 100 \leq \mu_{\text{CBi}} \leq 500 \\ & 290 \leq \mu_{\text{Ti}} \leq < 330 \\ & 0.01 \leq \mu_{V} \leq 0.09 \\ & 0.012 \leq \mu_{F} \leq 0.17 \\ & 290 \leq \mu_{T} \leq \ 330 \end{split}$$

© Luis Dominguez, 2006

Characterization of Input Uncertainty/Variability

Input uncertainties are represented by a Gaussian p.d.f.

Uncertainties are quantified in terms of mean and variance

$$\begin{split} \boldsymbol{\theta} = \begin{bmatrix} \boldsymbol{C}_{Ai}, \boldsymbol{C}_{Bi}, \boldsymbol{T}_{i}, \boldsymbol{V}, \boldsymbol{F}, \boldsymbol{Q} \end{bmatrix}^{\mathsf{T}} &\sim \boldsymbol{N}(\boldsymbol{\mu}_{\theta}, \boldsymbol{\Sigma}) \\ \boldsymbol{\sigma}_{\theta i} = \boldsymbol{0}. \boldsymbol{1^{*}} \boldsymbol{\mu}_{\theta i} & \begin{array}{c} \boldsymbol{\mu}_{\theta} \text{: Mean} \\ \boldsymbol{\sigma}_{\theta} \text{: Standard Deviation} \\ \end{split}$$

© Luis Dominguez, 2006

Monte Carlo Sampling (MCS)

Estimation of the expected mean

More than 10,000 samples are needed to obtain a precise estimate of the expected mean.

Estimation of the expected variance

More than 10,000 samples are required to obtain a precise estimate of the expected variance.

© Luis Dominguez, 2006

Objective Functions

Dual Response Approach (Vining and Myers, 1990)

Min 20 *
$$[\sigma_{P_B}^2]$$

s.t.
 $\mu_{P_B} = 60$

MSE Approach (Lin and Tu, 1990)

Min MSE(R_B) = 20 *
$$[\sigma_{P_B}^2 + (E(P_B) - 60)^2]$$

Variance Bias $k = 20 \text{ s.mol}^{-1}.hr$

Weighted MSE Approach (Ding et al., 2004)

Min MSE(P_B) = 20 * [(1 - w)
$$\sigma_{P_B}^2$$
 + w(E(P_B) - 60)²]

© Luis Dominguez, 2006

Effect of Weight on Objective Function

Dual Response Approach Vining and Myers (1990)

© Luis Dominguez, 2006

Distribution of Response Before and After Robust Design

Weighted MSE Approach (Ding et al., 2004)

AFTER

© Luis Dominguez, 2006

BEFORE

Dept. of Chem. Eng., University of Ottawa

Limitations

- Approach only focuses on minimization of transmitted variability from the inputs to the objective function with or without consideration of a target value for the quality variable.
- Capital and operating costs are not considered.
- There is a potential for violation of input/state constraints during stochastic operation. (Expected values meet constraints but realizations may not.)

© Luis Dominguez, 2006

Design of a Chemical Plant

Mathematical Form:

d, x, z : design, control and state vectors

Two approaches that tackle the problem of designing Chemical Processes under uncertainty

Deterministic/Multiperiod Approach

Stochastic Approach

$$\boldsymbol{\Theta} = \left\{ \boldsymbol{\theta} : \boldsymbol{\theta}_{i}^{L} \leq \boldsymbol{\theta}_{i} \leq \boldsymbol{\theta}_{i}^{U}, i = 1, 2, ... N_{p} \right\}$$

© Luis Dominguez, 2006

 $\Theta = \left\{ \boldsymbol{\theta} : \boldsymbol{\theta}_{i} \in j(\boldsymbol{\theta}) \right\}$

Expectation of Objective function

Uncertainty in the parameters is characterized as a joint probability density function (PDF)

$$E_{\boldsymbol{\theta}\in\Theta}\left\{ \min_{\mathbf{z}} C(\mathbf{d},\mathbf{z},\boldsymbol{\theta}) \middle| f(\mathbf{d},\mathbf{z},\boldsymbol{\theta}) \leq 0 \right\} = \int_{\boldsymbol{\theta}\in\Theta} C^{*}(\mathbf{d},\boldsymbol{\theta}) j(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

where

$$C^*(\mathbf{d}, \mathbf{\theta}) = \min_{\mathbf{z}} \left\{ C(\mathbf{d}, \mathbf{\theta}) \mid f(\mathbf{d}, \mathbf{z}, \mathbf{\theta}) \leq 0 \right\}$$

Simplified form

$$\min \int_{\boldsymbol{\theta} \in \Theta} \mathbf{C}^*(\mathbf{d}, \boldsymbol{\theta}) j(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

w.r.t. **d**
s.t. $\forall \boldsymbol{\theta} \in \Theta \left\{ \exists \mathbf{z} \left(\forall j \in \mathbf{J}[\mathbf{f}_j(\mathbf{d}, \mathbf{z}, \boldsymbol{\theta})] \leq 0 \right] \right) \right\}$
d \in \mathbf{D}, \mathbf{z} \in \mathbf{Z}, \boldsymbol{\theta} \in \Theta

Inclusion of Robustness and Quality in the Design of Chemical Plants (Bernardo et al 2001)

Robustness criterion 1: Penalty term in objective function based on Taguchi loss function

$$P_q = k(y - y^*)^2$$

Taguchi S/N ratio	k value	
Nominal-the-best Symmetric	Same k for all y	
Nominal-the-best	$k = k_1 \text{ if } y < y^*$ $k = k_2 \text{ if } y \ge y^*$	
Larger-the-better	$ \begin{aligned} &k = k_1 \text{ if } y < y^* \\ &k = 0 \text{ if } y \ge y^* \end{aligned} $	
Smaller-the-better	$ k = 0 \text{if } y < y^* \\ k = k_2 \text{ if } y \ge y^* $	

$$C_q(\mathbf{d}, \mathbf{z}, \mathbf{x}, \mathbf{y}, \mathbf{y}^*, \mathbf{\theta}) = C(\mathbf{d}, \mathbf{z}, \mathbf{x}, \mathbf{\theta}) - P_q(\mathbf{y}, \mathbf{y}^*)$$

Robustness criterion 2: Explicit restriction on robustness metrics

$$r(m_{v}) \leq \gamma$$

$\boldsymbol{\mu}_{y}$	$= E_{\Theta}(\mathbf{y})$	
------------------------	----------------------------	--

$$\sigma_{\mathbf{y}}^{2} = \mathrm{E}_{\Theta}\left\{\mathbf{y} - \boldsymbol{\mu}_{\mathbf{y}}\right)^{2}\right\}$$

Robustness metric	Robustness Criteria	
Mean Variance	Minimum mean Maximum variance	$\begin{array}{l} \mu_{\mathbf{y}} \geq \mu_{min} \\ \sigma_{\mathbf{y}}^2 \leq \sigma_{max}^2 \end{array}$

© Luis Dominguez, 2006

Single-Stage Stochastic Optimization Formulation

$$\begin{array}{ll} \min \ \frac{1}{N_{p}} \sum_{i=1}^{N_{p}} \ C_{q}(\mathbf{d}, z_{i}, x_{i}, y_{i}, y_{i}^{*}, \boldsymbol{\theta}_{i}) \\ \text{w.r.t.} & \mathbf{d}, z_{i}, x_{i}, y_{i} \\ \text{s.t.} & C_{q}(\mathbf{d}, z_{i}, x_{i}, y_{i}, y_{i}^{*}, \boldsymbol{\theta}_{i}) = C(\mathbf{d}, z_{i}, x_{i}, \boldsymbol{\theta}_{i}) - P_{q}(y_{i}, y_{i}^{*}) \\ & \mathbf{h}(\mathbf{d}, z_{i}, x_{i}, \boldsymbol{\theta}_{i}) = 0 \\ & \mathbf{g}(\mathbf{d}, z_{i}, x_{i}, \boldsymbol{\theta}_{i}) \leq 0 \\ & \mu_{y} = \frac{1}{N_{p}} \sum_{i=1}^{N_{p}} y_{i} \\ & \frac{1}{N_{p}} -1 \sum_{i=1}^{N_{p}} (y_{i} - \mu_{y})^{2} \leq \gamma \\ & \mathbf{d} \in D, \quad \mathbf{\theta}_{i} \in \Theta, \quad z_{i} \in Z, \quad x_{i} \in X, \quad y_{i} \in Y \\ & i = 1, \ 2, \ \dots, \ N_{p} \end{array}$$

© Luis Dominguez, 2006

Design of a RHE system

Georgiadis and Pistikopoulos (1999); Bernardo et al. (2001)

Capital+OperatingCosts = $691.2V^{0.7} + 873.6A^{0.6} + 1.76F_{W} + 7.056F_{1}$

© Luis Dominguez, 2006

Design Equations and Objective

Penalty

Estimation of overall expected Cost

Using HSS and cubatures degree 3 and 5

© Luis Dominguez, 2006

Results

(Penalty term in Objective Function)

© Luis Dominguez, 2006

Results

(Penalty term + Explicit restriction on robustness Metrics)

© Luis Dominguez, 2006

Conclusions

Concerning sampling techniques to estimate E [Cost function]

- Hammersley Sequence Sampling proved to be the most efficient technique:
 - better uniformity properties
 - fewer samples are required

Concerning Robust Design criteria

- Using the weighted MSE approach a trade-off between low variability and closeness to target is found.

Concerning Integrated Design and Stochastic Optimization

- A single-stage stochastic approach allows capital and operating cost as well as quality cost to be accounted for at the design stage.

Acknowledgements

- Dr. David D. McLean
- Professors and staff in the department at OU

Thank you !!

References:

Bernardo, F. P., Pistikopoulos, E. N., and Saraiva, P. M., "Quality cost and robustness criteria in chemical process design optimization", Computers and Chemical Engineering, Vol. 21, 27-40, 2001.

Boudriga, S., "Evaluation of parameter design methodologies for the design of chemical process units", M.Sc. Thesis, University of Ottawa, 1990.

Copeland, K. A. F., and Nelson P. R., "Dual Response optimization via Direct Function Minimization", Journal of Quality Technology, Vol.28, No. 3, 1996

Ding, R., Lin, D. J. J., and Wei, D., "Dual-Response surface optimization: A weighted MSE Approach", Quality Engineering, Vol. 16, No.3, 377-385, 2004.

Diwekar U. M., and Kalagnanam, R. J., "Efficient sampling technique for optimization under uncertainty", AIChE J., Vol. 43, No. 2, 1997.

Lin, D. K., and Tu W., "Dual Response Surface Optimization", Journal of Quality Technology, Vol. 27, No.1, 1995

Vining, G. G., and Myers R. H., "Combining Taguchi and Response Philosophies a Dual Response Approach". Journal of Quality Technology, Vol. 22, No.1, 1990

Questions ?