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Types of split-plot designs
split-plot designs are used when independently 
resetting some of the factors for each run is 
impractical
some terminology: 

whole-plot vs. sub-plot factors
whole plots: subset of runs for which whole-plot 
factors are not reset

examples:
mixture-process variable experiments
multi-stage experiments
experiments with hard-to-change variables



storage tanks / milk

batches / curds

cheeses

Multi-stage split-plot designs
Source: Eric Schoen



Mixture-process variable split-
plot designs
Source: Jones & Goos (2006)

Whole-Plot Factors
EPDM
Ethylene
Tallow
Mica
Lubricant 
Stabilizer
EVA

Sub-Plot Factors
Gas Type (3 levels)
Flow Rate
Power
Reaction Time



Hard-to-change factors (version 1)

time-consuming, hard, … to change factor levels
physical constraints on whole-plot sizes, one-
stage experiment
example (Gilmour & Goos, 2006)

factors: pressure in drying chamber, heating 
temperature, initial solids content, slab thickness, 
freezing rate
response: amount of volatile components in freeze-
dried coffee
5 observations during each of 6 days



Freeze drying experiment
WP Press Temp Solids Thickn Rate WP Press Temp Solids Thickn Rate
1 1 0 0 0 1 4 1 0 0 -1 0
1 1 0 0 1 0 4 1 1 0 0 0
1 1 -1 0 0 0 4 1 0 0 0 -1
1 1 0 0 0 0 4 1 0 -1 0 0
1 1 0 1 0 0 4 1 0 0 0 0
2 0 0 0 0 0 5 -1 0 0 0 0
2 0 -1 1 -1 1 5 -1 1 1 -1 1
2 0 1 1 1 0 5 -1 1 -1 1 -1
2 0 1 -1 -1 0 5 -1 -1 1 1 -1
2 0 -1 -1 1 1 5 -1 -1 -1 -1 1
3 -1 0 0 0 0 6 0 1 -1 1 1
3 -1 1 1 1 1 6 0 0 0 0 0
3 -1 -1 1 -1 -1 6 0 1 1 -1 -1
3 -1 -1 -1 1 -1 6 0 -1 1 1 1
3 -1 1 -1 -1 1 6 0 -1 -1 -1 -1



Hard-to-change factors (version 2)

time-consuming, hard, … to change factor levels
no physical constraints on whole-plot sizes, one-
stage experiment
example (Webb et al., JQT 2004)

factors: spacing seal crimper, machine speed, 
temperature
response: quality of air-tight bags
Box-Behnken design
spacing of seal crimper was reset only 4 times



Hard-to-change factors
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GLS estimation

variance-covariance matrix

optimality criteria
D: maximize determinant
A: minimize trace 
G: minimize max
V: minimize average

find optimal arrangement in whole plots for given X

( ) yVXXVX 111 ''ˆ −−−=β

Analysis and design
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Number of split-plot arrangements
number of possible split-plot designs

given design with w whole-plot levels
ni design points at whole-plot level i

only partitioning matters
order of whole plots doesn’t matter
neither does the order of the sub-plots within whole 
plots
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Number of split-plot arrangements 
with one hard-to-change factor x1

S(4,4)=1 way to partition 4 runs in 
4 subsets: {{1},{2},{3},{4}}
S(4,3)=6 ways to partition them in 
3 subsets: 
{{1}{2}{3,4},{{1}{3}{2,4},…}
S(4,2)=7 ways to partition them in 
2 subsets: 
{{1,2,3}{4},…,{1,4}{2,3}}
S(4,1)=1 partition of a single 
subset: {1,2,3,4}
15 arrangements for each wp 
level
15 × 15 =  225 possible designs

x1 x2 x3
- - -
- - +
- + -
- + +
+ - -
+ - +
+ + -
+ + +

n1 = 4

n2 = 4



Number of possible designs

2 billion 562 million possibilities for a design with 8 whole-
plot level combinations and 4 sub-plot level combinations

and that’s just for a 25 factorial design with 3 hard-to-
change variables and 2 easy-to-change variables !



The 23 factorial design revisited

D-optimal for main-effects
model
(4 whole plots of size 2)



The 23 factorial design revisited

A-, G- and V-optimal for main-
effects model
(2 whole plots of size 2 + 4 of size 1)



The 23 factorial design revisited

D-optimal for main-effects + 2 
f.i. model when small correlation
(4 whole plots of size 2)



The 23 factorial design revisited

D-optimal for main-effects + 2 f.i. model 
when highly correlated observations
(2 whole plots of size 2 + 1 of size 4)



The 23 factorial design revisited

A-, G-, V- optimal for main-
effects + 2 f.i. model
(4 whole plots of size 2)



The 23 factorial design revisited

D-optimal for saturated model with 
main effect, 2 f.i.’s and 3 f.i.
(2 whole plots of size 4)



The 23 factorial design: conclusion
all criteria lead to different designs
the optimal designs strongly depend on the model
unbalanced designs can be optimal
the completely randomized design (CRD) is not 
optimal !

η = 0.5
31/225 designs outperform the CRD in terms of D-eff.
14/225 designs outperform it in terms of A- and V-eff.
2/225 designs outperform it in terms of G-eff.

η = 2
201/225 designs outperform the CRD in terms of D-eff.
46/225 designs outperform it in terms of A- and V-eff.
2/225 designs outperform it in terms of G-eff.



3 design strategies: Option I
orthogonal main-effect plan
option I

split runs at each whole-plot factor in 2 whole 
plots using highest-order sub-plot interaction 
contrast
2mw+1 whole plots of size 2ms-1

information matrix
diagonal
whole-plot terms (+ intercept):

sub-plot terms: n

121 −×+ sm
n

η



Option I: Illustration 

x1 x2 x3 x2x3
- - - +
- - + -
- + - -
- + + +
+ - - +
+ - + -
+ + - -
+ + + +



Option I vs CRD
D-efficiency

A-, G-efficiency: CRD always better
V-efficiency: CRD always better



3 design strategies: Option II
orthogonal main-effect plan
option II

create whole plots of size 2 by taking runs 
together which have opposite signs for sub-plot 
variables (mirror-image pairs (Tyssedal & Kulahci 2005))

n / 2 whole plots of size 2
information matrix

diagonal 
whole-plot terms (+ intercept):

sub-plot terms: n

21 ×+η
n



x1 x2 x3
- - -
- - +
- + -
- + +
+ - -
+ - +
+ + -
+ + +

Option II: Illustration 



Option II vs CRD: D-efficiency
D-efficiency

A-, G-efficiency: option II beats CRD if mw < ms - 1
V-efficiency: option II beats CRD if mw < ms - 3



3 design strategies: Option III
orthogonal main-effect plan
option III

split entire design in two using highest-order interaction
run one half as a CRD
run other half as a split-plot design with 2mw+1 whole 
plots
2mw whole plots of size 2ms-1 + 2m of size 1
information matrix

diagonal
whole-plot terms (+ intercept):

sub-plot terms: 
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Option III: Illustration 

x1 x2 x3 x1x2x3
- - - -
- - + +
- + - +
- + + -
+ - - +
+ - + -
+ + - -
+ + + +



design option III performs reasonably well compared 
to the CRD when mw is small

Option III vs CRD: D-efficiency



A-, G-efficiency: design option III is not too bad for 
small mw

V-efficiency: design option III is inferior to CRD in 
practical situations

Option III vs CRD



Discussion
relatively new design problem

most research on split-plot designs 
concentrates on different types of experiments
Webb, Lucas, Borkowski, … have looked at the 
average efficiency of using random run orders 
only
it is better to search for good run orders

optimal numbers and sizes of whole plots 
heavily depend on model, optimality 
criterion, and variance ratio η



Discussion
main-effects models
several good arrangements of 2-level factorial 
design were presented
designs that use mirror image pairs as whole plots 
perform very well with respect to all design criteria
+ OLS and GLS are equivalent
− 2 f.i. coefficients are not estimated as efficiently as main 

effects
± n/2 whole plots

expensive
whole-plot (and 2 f.i.) coefficients are estimated quite well
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