Optimal two-level split-plot designs

Peter Goos

Universiteit Antwerpen James M. Lucas

J.M. Lucas & Associates

Outline

- types of split-plot designs
- number of possible designs
- illustration: 2³ factorial design
 - main-effects model
 - □ main-effects + 2 f.i. model
- three simple design options
- comparison to completely randomized designs
- conclusion

Types of split-plot designs

- split-plot designs are used when independently resetting some of the factors for each run is impractical
- some terminology:
 - whole-plot vs. sub-plot factors
 - whole plots: subset of runs for which whole-plot factors are not reset
- examples:
 - mixture-process variable experiments
 - multi-stage experiments
 - experiments with hard-to-change variables

Multi-stage split-plot designs

Source: Eric Schoen

storage tanks / milk

batches / curds

cheeses

Mixture-process variable splitplot designs

Source: Jones & Goos (2006)

Whole-Plot Factors EPDM Ethylene Tallow Mica Lubricant Stabilizer EVA Sub-Plot Factors Gas Type (3 levels) Flow Rate Power Reaction Time

Hard-to-change factors (version 1)

- time-consuming, hard, ... to change factor levels
- physical constraints on whole-plot sizes, onestage experiment
- example (Gilmour & Goos, 2006)
 - factors: pressure in drying chamber, heating temperature, initial solids content, slab thickness, freezing rate
 - response: amount of volatile components in freezedried coffee
 - □ 5 observations during each of 6 days

Freeze drying experiment

WP	Press	Temp	Solids	Thickn	Rate	W	P Press	Temp	Solids	Thickn	Rate
1	1	0	0	0	1	4	1	0	0	-1	0
1	1	0	0	1	0	4	1	1	0	0	0
1	1	-1	0	0	0	4	1	0	0	0	-1
1	1	0	0	0	0	4	1	0	-1	0	0
1	1	0	1	0	0	4	1	0	0	0	0
2	0	0	0	0	0	5	-1	0	0	0	0
2	0	-1	1	-1	1	5	-1	1	1	-1	1
2	0	1	1	1	0	5	-1	1	-1	1	-1
2	0	1	-1	-1	0	5	-1	-1	1	1	-1
2	0	-1	-1	1	1	5	-1	-1	-1	-1	1
3	-1	0	0	0	0	6	0	1	-1	1	1
3	-1	1	1	1	1	6	0	0	0	0	0
3	-1	-1	1	-1	-1	6	0	1	1	-1	-1
3	-1	-1	-1	1	-1	6	0	-1	1	1	1
3	-1	1	-1	-1	1	6	0	-1	-1	-1	-1

Hard-to-change factors (version 2)

- time-consuming, hard, ... to change factor levels
- no physical constraints on whole-plot sizes, onestage experiment
- example (Webb et al., JQT 2004)
 - factors: spacing seal crimper, machine speed, temperature
 - response: quality of air-tight bags
 - □ Box-Behnken design
 - □ spacing of seal crimper was reset only 4 times

Hard-to-change factors

wp	spacing	speed	temp	response
1	0	+1	-1	5.005
	0	+1	+1	9.170
	0	0	0	9.235
2	+1	0	+1	8.450
	+1	0	-1	5.110
	+1	-1	0	9.155
	+1	+1	0	5.010
3	-1	+1	0	5.800
	-1	-1	0	10.885
	-1	0	-1	5.940
	-1	0	+1	9.110
4	0	0	0	8.090
	0	-1	-1	9.100
	0	-1	+1	10.150
	0	0	0	8.195

Model

$$y_{ij} = \mathbf{f}'(\mathbf{x}_{ij})\boldsymbol{\beta} + \boldsymbol{\gamma}_i + \boldsymbol{\varepsilon}_{ij}$$
$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\boldsymbol{\gamma} + \boldsymbol{\varepsilon}$$

$$\gamma_i \sim N(0, \sigma_{\gamma}^2)$$
$$\varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^2)$$
$$\operatorname{cov}(\gamma_k, \varepsilon_{ij}) = 0, \forall i, j, k$$

$$\mathbf{V} = \operatorname{diag} \left(\mathbf{V}_{1}, \mathbf{V}_{2}, ..., \mathbf{V}_{b} \right) \qquad \eta = \frac{\sigma_{\gamma}^{2}}{\sigma_{\varepsilon}^{2}}$$
$$\mathbf{V}_{i} = \sigma_{\varepsilon}^{2} \begin{bmatrix} 1 + \eta & \eta & \cdots & \eta \\ \eta & 1 + \eta & \cdots & \eta \\ \vdots & \ddots & \ddots & \vdots \\ \eta & \cdots & \cdots & 1 + \eta \end{bmatrix}$$

Analysis and design

GLS estimation

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}' \mathbf{V}^{-1} \mathbf{X} \right)^{-1} \mathbf{X}' \mathbf{V}^{-1} \mathbf{y}$$

variance-covariance matrix

$$\operatorname{var}(\hat{\boldsymbol{\beta}}) = \left(\mathbf{X}'\mathbf{V}^{-1}\mathbf{X}\right)^{-1}$$

Number of split-plot arrangements

- number of possible split-plot designs
 given design with w whole-plot levels
 - \Box *n_i* design points at whole-plot level *i*
- only partitioning matters
 - order of whole plots doesn't matter
 - neither does the order of the sub-plots within whole plots

$$N = \prod_{i=1}^{w} B_{n_i}$$

Number of split-plot arrangements

- number of possible split-plot designs
 given design with w whole-plot levels
 - \Box *n_i* design points at whole-plot level *i*
- only partitioning matters
 - order of whole plots doesn't matter
 - neither does the order of the sub-plots within whole plots

$$N = \prod_{i=1}^{w} B_{n_i}$$

with $B_{n_i} = \sum_{k=1}^{n_i} S(n,k)$

Number of split-plot arrangements

- number of possible split-plot designs
 given design with w whole-plot levels
 - \Box *n_i* design points at whole-plot level *i*
- only partitioning matters
 - order of whole plots doesn't matter
 - neither does the order of the sub-plots within whole plots

$$N = \prod_{i=1}^{w} B_{n_i}$$

with $B_{n_i} = \sum_{k=1}^{n_i} S(n,k)$
and $S(n,k) = \frac{1}{k!} \sum_{i=0}^{k-1} (-1)^i {k \choose i} (k-i)^n$

Number of split-plot arrangements with one hard-to-change factor x1

 S(4,4)=1 way to partition 4 runs in 4 subsets: {{1},{2},{3},{4}}

- S(4,3)=6 ways to partition them in 3 subsets: {{1}{2}{3,4},{{1}{3}{2,4},...}
- S(4,2)=7 ways to partition them in 2 subsets:
 - $\{\{1,2,3\}\{4\},\ldots,\{1,4\}\{2,3\}\}$
- S(4,1)=1 partition of a single subset: {1,2,3,4}
- 15 arrangements for each wp level
- $15 \times 15 = 225$ possible designs

Number of possible designs

$n_1 = \cdots = n_w$												
2	3	4	5	6	7	8						
2	5	15	52	203	877	4140						
4	25	225	2704	41209	769129	17139600						
8	125	3375	140608	8365427	674526133	70957944000						
16	625	50625	7311616	1698181681	$5.91559E{+}11$	2.93766E + 14						
32	3125	759375	380204032	3.44731E + 11	5.18798E + 14	1.21619E + 18						
64	15625	11390625	19770609664	6.99804E + 13	4.54986E + 17	$5.03503E{+}21$						
128	78125	170859375	1.02807E+12	1.4206E + 16	3.99022E + 20	2.0845E + 25						
256	390625	2562890625	5.34597E + 13	$2.88382E{+}18$	$3.49943E{+}23$	$8.62984E{+}28$						
	2 4 8 16 32 64 128 256	2 3 2 5 4 25 8 125 16 625 32 3125 64 15625 128 78125 256 390625	2 3 4 2 5 15 4 25 225 8 125 3375 16 625 50625 32 3125 759375 64 15625 11390625 128 78125 170859375 256 390625 2562890625	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						

2 billion 562 million possibilities for a design with 8 wholeplot level combinations and 4 sub-plot level combinations

and that's just for a 2⁵ factorial design with 3 hard-tochange variables and 2 easy-to-change variables !

	x_1	x_2	x_3	D1	D	2	D)3	D4
	-1	-1	-1	1	1	1	1	1	1
	-1	-1	+1	2	2	2	1	2	1
\rightarrow	-1	+1	-1	2	3	2	1	2	1
	-1	+1	+1	1	1	3	1	1	1
	+1	-1	-1	3	5	4	2	3	2
	+1	-1	+1	4	4	5	3	3	2
	+1	+1	-1	4	4	6	3	3	2
\rightarrow	+1	+1	+1	3	6	4	2	3	2

D-optimal for **main-effects** model

(4 whole plots of size 2)

A-, G- and V-optimal for **main**effects model

(2 whole plots of size 2 + 4 of size 1)

	x_1	x_2	x_3	D1	D	2	D)3	D4
	-1	-1	-1	1	1	1	1	1	1
	-1	-1	+1	2	2	2	1	2	1
\rightarrow	-1	+1	-1	2	3	2	1	2	1
	-1	+1	+1	1	1	3	1	1	1
	+1	-1	-1	3	5	4	2	3	2
	+1	-1	+1	4	4	5	3	3	2
	+1	+1	-1	4	4	6	3	3	2
\rightarrow	+1	+1	+1	3	6	4	2	3	2

D-optimal for **main-effects + 2 f.i.** model when small correlation (4 whole plots of size 2)

	x_1	x_2	x_3	D1	D)2	D)3	D4
	-1	-1	-1	1	1	1	1	1	1
	-1	-1	+1	2	2	2	1	2	1
\rightarrow	-1	+1	-1	2	3	2	1	2	1
	-1	+1	+1	1	1	3	1	1	1
	+1	-1	-1	3	5	4	2	3	2
	+1	-1	+1	4	4	5	3	3	2
	+1	+1	-1	4	4	6	3	3	2
\rightarrow	+1	+1	+1	3	6	4	2	3	2

D-optimal for **main-effects + 2 f.i.** model when highly correlated observations (2 whole plots of size 2 + 1 of size 4)

	x_1	x_2	x_3	D1	D	2	D)3	D4
	-1	-1	-1	1	1	1	1	1	1
	-1	-1	+1	2	2	2	1	2	1
\rightarrow	-1	+1	-1	2	3	2	1	2	1
	-1	+1	+1	1	1	3	1	1	1
	+1	-1	-1	3	5	4	2	3	2
	+1	-1	+1	4	4	5	3	3	2
	+1	+1	-1	4	4	6	3	3	2
\rightarrow	+1	+1	+1	3	6	4	2	3	2

A-, G-, V- optimal for maineffects + 2 f.i. model

(4 whole plots of size 2)

x_1	x_2	x_3	D1	D2		D)3	D4
-1	-1	-1	1	1	1	1	1	1
-1	-1	+1	2	2	2	1	2	1
-1	+1	-1	2	3	2	1	2	1
-1	+1	+1	1	1	3	1	1	1
+1	-1	-1	3	5	4	2	3	2
+1	-1	+1	4	4	5	3	3	2
+1	+1	-1	4	4	6	3	3	2
+1	+1	+1	3	6	4	2	3	2

D-optimal for saturated model with main effect, 2 f.i.'s and 3 f.i.

(2 whole plots of size 4)

The 2³ factorial design: conclusion

- all criteria lead to different designs
- the optimal designs strongly depend on the model
- unbalanced designs can be optimal
- the completely randomized design (CRD) is not optimal !
 - $\Box \eta = 0.5$
 - 31/225 designs outperform the CRD in terms of D-eff.
 - 14/225 designs outperform it in terms of A- and V-eff.
 - 2/225 designs outperform it in terms of G-eff.

 $\Box \eta = 2$

- 201/225 designs outperform the CRD in terms of D-eff.
- 46/225 designs outperform it in terms of A- and V-eff.
- 2/225 designs outperform it in terms of G-eff.

3 design strategies: Option I

orthogonal main-effect plan

option I

- split runs at each whole-plot factor in 2 whole plots using highest-order sub-plot interaction contrast
- $\Box 2^{m_w+1}$ whole plots of size 2^{m_s-1}
- □ information matrix
 - diagonal
 - whole-plot terms (+ intercept):

$$\frac{n}{1+\eta\times 2^{m_s-1}}$$

sub-plot terms: n

Option I: Illustration

Option I vs CRD

D-efficiency

				m_s			
m_w	2	3	4	5	6	7	8
1	0.0000	0.0000	0.1143	0.2693	0.3802	0.4624	0.5255
2	0.6377	2.0000	2.9403	3.6041	4.0902	4.4584	4.7455
3	1.6180	4.1469	6.0000	7.3550	8.3723	9.1580	9.7805
4	3.0796	7.6682	11.2655	14.0000	16.1078	17.7679	19.1033
5	5.2223	13.3739	20.2439	25.6875	30.0000	33.4641	36.2927
6	8.3300	22.5511	35.4713	46.1584	54.8657	62.0000	67.9125

- A-, G-efficiency: CRD always better
- V-efficiency: CRD always better

3 design strategies: Option II

orthogonal main-effect plan

option II

- create whole plots of size 2 by taking runs together which have opposite signs for sub-plot variables (*mirror-image pairs* (Tyssedal & Kulahci 2005))
- $\Box n$ / 2 whole plots of size 2
- □ information matrix
 - diagonal
 - whole-plot terms (+ intercept):

$$\frac{n}{1+\eta \times 2}$$

sub-plot terms: n

Option II: Illustration

Option II vs CRD: D-efficiency

D-efficiency

				m_s			
m_w	2	3	4	5	6	7	8
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	0.6377	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	1.6180	0.3924	0.0000	0.0000	0.0000	0.0000	0.0000
4	3.0796	0.9206	0.2827	0.0000	0.0000	0.0000	0.0000
5	5.2223	1.6180	0.6377	0.2207	0.0000	0.0000	0.0000
6	8.3300	2.5280	1.0776	0.4863	0.1810	0.0000	0.0000

A-, G-efficiency: option II beats CRD if $m_w < m_s - 1$ V-efficiency: option II beats CRD if $m_w < m_s - 3$

3 design strategies: Option III

- orthogonal main-effect plan
- option III
 - split entire design in two using highest-order interaction
 - □ run one half as a CRD
 - \Box run other half as a split-plot design with 2^{m_W+1} whole plots
 - \square 2^{*m*_W} whole plots of size 2^{*m*_S-1} + 2^{*m*} of size 1
 - □ information matrix
 - diagonal

• whole-plot terms (+ intercept): $\frac{n}{1+\eta} \times \frac{2+\eta(2^{m_s-1}+1)}{2+\eta \times 2^{m_s}}$

• sub-plot terms:
$$\frac{n}{1+\eta} \times (1+\eta/2)$$

Option III: Illustration

Option III vs CRD: D-efficiency

				m_s			
m_w	2	3	4	5	6	7	8
1	0.0000	0.3660	0.4733	0.4775	0.4449	0.4027	0.3616
2	0.3621	0.8000	0.8716	0.8186	0.7333	0.6483	0.5734
3	0.7870	1.3120	1.3333	1.2063	1.0556	0.9188	0.8042
4	1.2840	1.9151	1.8683	1.6471	1.4157	1.2170	1.0557
5	1.8646	2.6248	2.4879	2.1479	1.8182	1.5456	1.3297
6	2.5419	3.4593	3.2053	2.7170	2.2679	1.9077	1.6282

design option III performs reasonably well compared to the CRD when m_w is small

Option III vs CRD

 A-, G-efficiency: design option III is not too bad for small m_w

				m_s			
m_w	2	3	4	5	6	7	8
1	0.0000	0.6667	0.9091	0.9091	0.8235	0.7234	0.6324
2	0.6667	2.0000	2.2667	2.0000	1.6571	1.3684	1.1459
3	2.0000	6.0000	6.0000	4.4000	3.1892	2.4138	1.9084
4	6.0000	>>100	62.0000	14.0000	6.9302	4.4000	3.1587
5	>>100	>>100	>>100	>>100	30.0000	9.6364	5.5852
6	>>100	>>100	>>100	>>100	>>100	62.0000	12.3217

V-efficiency: design option III is inferior to CRD in practical situations

Discussion

relatively new design problem

most research on split-plot designs concentrates on different types of experiments

Webb, Lucas, Borkowski, ... have looked at the average efficiency of using random run orders only

□ it is better to search for good run orders

 optimal numbers and sizes of whole plots heavily depend on model, optimality criterion, and variance ratio η

Discussion

- main-effects models
- several good arrangements of 2-level factorial design were presented
- designs that use mirror image pairs as whole plots perform very well with respect to all design criteria
 - + OLS and GLS are equivalent
 - 2 f.i. coefficients are not estimated as efficiently as main effects
 - \pm n/2 whole plots
 - expensive
 - whole-plot (and 2 f.i.) coefficients are estimated quite well

Optimal two-level split-plot designs

Peter Goos

Universiteit Antwerpen James M. Lucas

J.M. Lucas & Associates