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Overview

• Description of the original problem
• Features of the problem
• Methodology and formulas
• Test run A: non-conditioned inference
• Test run B: conditional inference
• Results and conclusions
• Final Thoughts



The original problem

• Two arrays for detecting cosmic rays:
– High-Resolution Fly’s Eye (HiRes), Utah
– Akeno Giant Airshower Array (AGASA), Japan

• 1996: AGASA reports observing clusters of 
ultrahigh energy (over 4x1019eV) particles.

• 1997-2003: HiRes detects similar clusters of rays.
• Are these particles coming from the same cosmic 

sources?



The original problem (cont.)
• Some of the “events” detected by the arrays is just 

background noise.  
• The hits on both detectors are an unknown mix of 

background events and “real” events.
• Simulations have yielded estimates for the 

expected number of background events at AGASA 
and HiRes.

• Are the sources of AGASA’s real events the same 
as the sources of HiRes’s?

• Do real events come into the HiRes and AGASA 
detectors at the same rate?



Declaring variables
• Constants:

– T1: time that the HiRes detector is open
– T2: time that the AGASA detector is open
– µ1f: expected number of background events at HiRes
– µ2f: expected number of background events at AGASA

• Parameters:
– f1r: frequency of non-background events at HiRes
– f2r: frequency of non-background events at AGASA
– f0r: frequency of non-background events if f1r = f2r.
– T1 f1r+ µ1f: expected number of total events at HiRes
– T2 f2r+ µ2f: expected number of total events at AGASA

• Data:
– x1: number of events detected at HiRes
– x2: number of events detected at AGASA



The model
• Model:

– x1 and x2 are independent random variables
– x1 has a Poisson distribution with mean T1f1r+µ1f.
– x2 has a Poisson distribution with mean T2f2r+µ2f

• Hypotheses:
– The null hypothesis is H0: f1r=f2r=f0r.
– The alternative is two-sided.

• Under the alternative, f1r and f2r can be estimated separately.
– If the number of events x1 is less than the expected number of background 

events µ1f, then the MLE for f1r is 0. 
– If the number of events x2 is less than the expected number of background 

events µ2f, then the MLE for f2r is 0. 
– The MLE for f1r is the maximum of 0 and (x1- µ1f)/T1.
– The MLE for f2r is the maximum of 0 and (x2- µ2f)/T2.



Point estimation
• To get the MLE for f0r under the null, we 

maximize the joint Poisson likelihood:

• The MLE for f0r is the maximum of 0 and



Looking at the formulas

• Three lines partition the outcome space into 6 zones.
– f1r=0 if x1 < µ1f.
– f2r=0 if x2 < µ2f.
– f0r=0 if T1µ2fx1 + T2µ1fx2 < (T1+T2)µ1fµ2f.
– The three lines meet at a single point.

• The estimate for f0r is (x1+x2)/(T2+T2) minus a 
correction term for the interference of µ1f and µ2f.

• If µ1f =0 and µ2f =0, if there is no background noise, 
then we get exactly (x1+x2)/(T2+T2).



The likelihood ratio statistic

• Let l0 (x1,x2,f0r) be the log-likelihood under the 
alternative.   Let lA(x1,x2,f1r,f2r) be the log-
likelihood under the alternative.  The likelihood 
ratio statistic is



Test data set
• These numbers were based on conversations with 

Professor Belz in the Department of Physics at the 
University of Montana.

• The difference in the time exposures cancel out the 
difference in the sizes of the arrays, so we can let T1=T2=1.

• According to simulations, µ1f=3.6 and µ2f=6.4.
• There were x1=6 events at HiRes and x2=13 events at 

AGASA.
• The MLEs are f1r=2.4, f2r=6.6, and f0r=6.923737.
• The likelihood ratio statistic is LR=2.312918.



Test Run A: unconditional inference
• Each possible data pair (x1,x2) has an f0 and a LR(x1,x2).
• We’d like to use these LR(x1,x2) to obtain a p-value.
• Let f0rdata be the data pair’s estimate for f0r.  Let LRdata be the data 

pair’s likelihood ratio statistic.
• We use the distribution for (x1,x2) over the whole quarter-plane.
• Our p-value is the sum of the probabilities of all the (x1,x2) with 

higher LR’s: ΣLR(x1,x2)>LRdataP(x1,x2|f0rdata).
• With the test data, the p-value is 0.2218632.
• Each possible data set has its own f0, so each data set gets its own 

p-value based on its own distribution under the null.
• If the null is true, then the distribution for the p-value should be 

Uniform(0,1), plus or minus the discrete nature of the model.



The cumulative density function

• This is the distribution of the 
p-value if the null is true and 
f0r is the data’s f0r.

• For any α, the probability of 
rejecting is always greater 
than α.

• We expect some of this, 
since P(LR=0)>0, but this is 
bad.



Focusing on practical α

• We can see the 
discretization.

• Data pairs that are 
CLEARLY not 
significant are still not 
significant.



Test Runs B: conditional inference

• This time, we’re going to try conditioning on f0r.
• We can’t limit ourselves to data pairs with the exact same f0r as 

our data’s.  There won’t be enough other data pairs.  There might 
not be any.

• We can try choosing a percentage w, and then limit ourselves to 
(x1,x2) with f0r’s within wf0rdata of f0rdata.

• For example, if we use w=10%, then we’re conditioning on f0
being between 90% and 110% of f0rdata.

• Our p-value is: ΣLR(x1,x2)>LRdata,|f0r(x1,x2)-f0data|<wf0dataP(x1,x2|f0rdata) / 
Σ|f0r(x1,x2)-f0rdata|<wf0rdataP(x1,x2|f0rdata).

• With the test data, the p-value is 0.2338813.
• Again, each possible data set has its own f0r, so each data set gets 

its own p-value based on its own distribution under the null.



The cumulative density function

• This is the distribution 
of the p-value if the 
null is true and f0r is 
the data’s f0r.

• The c.d.f. for this p-
value is a lot closer to 
what it should be.



Focusing on practical α

• We can still see the 
discretization, but it’s 
not as bad.

• Even though f0r is not 
a sufficient statistic, 
conditioning still 
seems to work.



Conclusions

• Maximum likelihood seemed despite the 
background events.

• Conditional inference looked more 
consistent than unconditional inference.

• When designing an ad hoc test statistic, 
check the distribution of the resulting p-
value.



Future work
• Here the conditioning window grew as f0 grew.  

Do I do better or different with a fixed window 
width?

• The MLEs for f0r, f1r and f2r are all biased.  Does 
this bias create problems?

• As the arrays are open longer, µ1f and/or µ2f
increase.
– We really start with frequencies f1f and f1f for 

background events, and then get µ1f=T1f1f and µ2f=T2f2f.
– How large do T1 and T2 have to be to yield a test with 

reasonable power?
• At what point can we discard the exact test and 

switch to asymptotics?
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