A Test for Two Poisson Processes in the Presence of Background Events

Matthew Tom Emmanuel College June 8, 2006

Overview

- Description of the original problem
- Features of the problem
- Methodology and formulas
- Test run A: non-conditioned inference
- Test run B: conditional inference
- Results and conclusions
- Final Thoughts

The original problem

- Two arrays for detecting cosmic rays:
 - High-Resolution Fly's Eye (HiRes), Utah
 - Akeno Giant Airshower Array (AGASA), Japan
- 1996: AGASA reports observing clusters of ultrahigh energy (over 4x10¹⁹eV) particles.
- 1997-2003: HiRes detects similar clusters of rays.
- Are these particles coming from the same cosmic sources?

The original problem (cont.)

- Some of the "events" detected by the arrays is just background noise.
- The hits on both detectors are an unknown mix of background events and "real" events.
- Simulations have yielded estimates for the expected number of background events at AGASA and HiRes.
- Are the sources of AGASA's real events the same as the sources of HiRes's?
- Do real events come into the HiRes and AGASA detectors at the same rate?

Declaring variables

- Constants:
 - T₁: time that the HiRes detector is open
 - T₂: time that the AGASA detector is open
 - μ_{1f} : expected number of background events at HiRes
 - μ_{2f} : expected number of background events at AGASA
- Parameters:
 - f_{1r} : frequency of non-background events at HiRes
 - f_{2r} : frequency of non-background events at AGASA
 - f_{0r} : frequency of non-background events if $f_{1r} = f_{2r}$.
 - $T_1 f_{1r} + \mu_{1f}$: expected number of total events at HiRes
 - $T_2 f_{2r} + \mu_{2f}$: expected number of total events at AGASA
- Data:
 - x_1 : number of events detected at HiRes
 - x_2 : number of events detected at AGASA

The model

- Model:
 - x_1 and x_2 are independent random variables
 - x_1 has a Poisson distribution with mean $T_1f_{1r} + \mu_{1f}$.
 - x_2 has a Poisson distribution with mean $T_2f_{2r}+\mu_{2f}$
- Hypotheses:
 - The null hypothesis is $H_0: f_{1r} = f_{2r} = f_{0r}$.
 - The alternative is two-sided.
- Under the alternative, f_{1r} and f_{2r} can be estimated separately.
 - If the number of events x_1 is less than the expected number of background events μ_{1f} , then the MLE for f_{1r} is 0.
 - If the number of events x_2 is less than the expected number of background events μ_{2f} , then the MLE for f_{2r} is 0.
 - The MLE for f_{1r} is the maximum of 0 and $(x_1 \mu_{1f})/T_1$.
 - The MLE for f_{2r} is the maximum of 0 and $(x_2 \mu_{2f})/T_2$.

Point estimation

• To get the MLE for f_{0r} under the null, we maximize the joint Poisson likelihood:

$$L_{0}(x_{1}, x_{2}, f_{0r}) = e^{-(T_{1}+T_{2})f_{0r}-\mu_{1f}-\mu_{2f}} \frac{(T_{1}f_{0r}+\mu_{1f})^{x_{1}}}{x_{1}!} \frac{(T_{2}f_{0r}+\mu_{2f})^{x_{2}}}{x_{2}!} \quad \text{and} \\ \ell_{0}(x_{1}, x_{2}, f_{0r}) = -(T_{1}+T_{2})f_{0r}-\mu_{1f}-\mu_{2f} \\ + x_{1}\log(T_{1}f_{0r}+\mu_{1f}) + x_{2}\log(T_{2}f_{0r}+\mu_{2f}) - \log(x_{1}!x_{2}!).$$

• The MLE for f_{0r} is the maximum of 0 and

$$\begin{split} \hat{f}_{0\mathbf{r}} &= \frac{1}{2} \frac{x_1 + x_2}{T_1 + T_2} - \frac{1}{2} \frac{\mu_{2f} T_1 + \mu_{1f} T_2}{T_1 T_2} \\ &+ \frac{\sqrt{((T_1 + T_2)(\mu_{1f} T_1 + \mu_{2f} T_2) - (x_1 + x_2)T_1 T_2)^2}}{+ 4(T_1 + T_2)T_1 T_2 \left(x_1 T_1 \mu_{2f} + x_2 T_2 \mu_{1f} - (T_1 + T_2) \mu_{1f} \mu_{2f}\right)}{2T_1 T_2 (T_1 + T_2)} \end{split}$$

Looking at the formulas

- Three lines partition the outcome space into 6 zones.
 - $f_{1r} = 0 \text{ if } x_1 < \mu_{1f}.$
 - $f_{2r} = 0 \text{ if } x_2 < \mu_{2f}.$
 - $f_{0r} = 0 \text{ if } T_1 \mu_{2f} x_1 + T_2 \mu_{1f} x_2 < (T_1 + T_2) \mu_{1f} \mu_{2f}.$
 - The three lines meet at a single point.
- The estimate for f_{0r} is $(x_1+x_2)/(T_2+T_2)$ minus a correction term for the interference of μ_{1f} and μ_{2f} .
- If $\mu_{1f} = 0$ and $\mu_{2f} = 0$, if there is no background noise, then we get exactly $(x_1+x_2)/(T_2+T_2)$.

The likelihood ratio statistic

• Let $l_0(x_1, x_2, f_{0r})$ be the log-likelihood under the alternative. Let $l_A(x_1, x_2, f_{1r}, f_{2r})$ be the log-likelihood under the alternative. The likelihood ratio statistic is

$$\begin{split} LR &= 2\left(\ell_A\left(x_1, x_2, \hat{f}_{1r}, \hat{f}_{2r}\right) - \ell_0\left(x_1, x_2, \hat{f}_{0r}\right)\right) \\ &= 2 \begin{pmatrix} -T_1 \hat{f}_{1r} - T_2 \hat{f}_{2r} - \mu_{1f} - \mu_{2f} \\ + x_1 \log\left(T_1 \hat{f}_{1r} + \mu_{1f}\right) + x_2 \log\left(T_2 \hat{f}_{2r} + \mu_{2f}\right) - \log\left(x_1 | x_2 | \right) \\ + (T_1 + T_2) \hat{f}_{0r} + \mu_{1f} + \mu_{2f} \\ - x_1 \log\left(T_1 \hat{f}_{0r} + \mu_{1f}\right) - x_2 \log\left(T_2 \hat{f}_{0r} + \mu_{2f}\right) + \log\left(x_1 | x_2 | \right) \end{pmatrix} \\ &= 2 \begin{pmatrix} x_1 \log\left(\frac{T_1 \hat{f}_{1r} + \mu_{1r}}{T_1 \hat{f}_{0r} + \mu_{1r}}\right) - T_1 \hat{f}_{1r} - T_2 \hat{f}_{2r} \\ + x_2 \log\left(\frac{T_2 \hat{f}_{2r} + \mu_{2r}}{T_2 \hat{f}_{0r} + \mu_{2r}}\right) + (T_1 + T_2) \hat{f}_{0r} \end{pmatrix} \end{split}$$

Test data set

- These numbers were based on conversations with Professor Belz in the Department of Physics at the University of Montana.
- The difference in the time exposures cancel out the difference in the sizes of the arrays, so we can let $T_1=T_2=1$.
- According to simulations, μ_{1f} =3.6 and μ_{2f} =6.4.
- There were $x_1=6$ events at HiRes and $x_2=13$ events at AGASA.
- The MLEs are $f_{1r}=2.4$, $f_{2r}=6.6$, and $f_{0r}=6.923737$.
- The likelihood ratio statistic is LR=2.312918.

Test Run A: unconditional inference

- Each possible data pair (x_1, x_2) has an f_0 and a LR (x_1, x_2) .
- We'd like to use these $LR(x_1,x_2)$ to obtain a p-value.
- Let f_{0rdata} be the data pair's estimate for f_{0r} . Let LR_{data} be the data pair's likelihood ratio statistic.
- We use the distribution for (x_1, x_2) over the whole quarter-plane.
- Our p-value is the sum of the probabilities of all the (x_1, x_2) with higher LR's: $\Sigma_{LR(x_1, x_2) \ge LRdata} P(x_1, x_2 | f_{0rdata})$.
- With the test data, the p-value is 0.2218632.
- Each possible data set has its own f_0 , so each data set gets its own p-value based on its own distribution under the null.
- If the null is true, then the distribution for the p-value should be Uniform(0,1), plus or minus the discrete nature of the model.

The cumulative density function

- This is the distribution of the p-value if the null is true and f_{0r} is the data's f_{0r} .
- For any α, the probability of rejecting is always greater than α.
- We expect some of this, since P(LR=0)>0, but this is bad.

Focusing on practical α

- We can see the discretization.
- Data pairs that are CLEARLY not significant are still not significant.

Test Runs B: conditional inference

- This time, we're going to try conditioning on f_{0r} .
- We can't limit ourselves to data pairs with the exact same f_{0r} as our data's. There won't be enough other data pairs. There might not be any.
- We can try choosing a percentage w, and then limit ourselves to (x_1,x_2) with f_{0r} 's within wf_{0rdata} of f_{0rdata} .
- For example, if we use w=10%, then we're conditioning on f_0 being between 90% and 110% of f_{0rdata} .
- Our p-value is: $\sum_{LR(x_1,x_2) \ge LRdata, |f0r(x_1,x_2)-f0data| < wf0data} P(x_1,x_2|f_{0rdata}) / \sum_{|f0r(x_1,x_2)-f0rdata| < wf0rdata} P(x_1,x_2|f_{0rdata}).$
- With the test data, the p-value is 0.2338813.
- Again, each possible data set has its own f_{0r} , so each data set gets its own p-value based on its own distribution under the null.

The cumulative density function

- This is the distribution of the p-value if the null is true and f_{0r} is the data's f_{0r} .
- The c.d.f. for this pvalue is a lot closer to what it should be.

Focusing on practical α

- We can still see the discretization, but it's not as bad.
- Even though f_{0r} is not a sufficient statistic, conditioning still seems to work.

Conclusions

- Maximum likelihood seemed despite the background events.
- Conditional inference looked more consistent than unconditional inference.
- When designing an ad hoc test statistic, check the distribution of the resulting p-value.

Future work

- Here the conditioning window grew as f₀ grew. Do I do better or different with a fixed window width?
- The MLEs for f_{0r} , f_{1r} and f_{2r} are all biased. Does this bias create problems?
- As the arrays are open longer, μ_{1f} and/or μ_{2f} increase.
 - We really start with frequencies f_{1f} and f_{1f} for background events, and then get $\mu_{1f}=T_1f_{1f}$ and $\mu_{2f}=T_2f_{2f}$.
 - How large do T_1 and T_2 have to be to yield a test with reasonable power?
- At what point can we discard the exact test and switch to asymptotics?

Acknowledgements

- Professor Russell Zaretski, University of Tennessee Department of Statistics, for inviting me
- Professor John Belz, University of Montana Department of Physics, for bringing the original problem to my attention
- B.J. Harshfield, for assisting with the software development
- The R Project for Statistical Computing, for providing the software environment