Robust Kernel Principal Component Analysis

Xinwei Deng School of Industrial and Systems Engineering Georgia Institute of Technology (Joint work with Prof. Ming Yuan of Georgia Tech)

Outline

- Review of Kernel PCA.
- Robust Kernel PCA.
- Sparsity Consideration.
- Simulation Illustrations.
- Conclusions.

Kernel PCA

- Kernel PCA is to apply the PCA in the feature space F.
- F is from the nonlinear mapping φ

$$\varphi: R^p \mapsto F, \ x \mapsto y.$$

• Given the data x_1, x_2, \ldots, x_n , the sample covariance matrix in F

$$C = \frac{1}{n} \sum_{i=1}^{n} \varphi(x_i) \varphi(x_i)^T \triangleq \frac{1}{n} Y^T Y.$$

• From the eignvalue equation $Cv = \lambda v$,

$$v = \sum_{i=1}^{n} \alpha_i \varphi(x_i).$$

Kernel PCA

• YY^T and Y^TY have the same eignvalues, i.e., if

$$YY^T\alpha = \lambda\alpha,$$

then

$$Y^T Y (Y^T \alpha) = \lambda (Y^T \alpha).$$

Hence, $v = Y^T \alpha = \sum_{i=1}^n \alpha_i \varphi(x_i).$

• Given the kernel function $k(x_i, x_j) = \varphi(x_i)^T \varphi(x_j), YY^T = K$, whose *ij*-th element is $k(x_i, x_j)$, and then

$$K\alpha = \lambda\alpha.$$

• The eignvector equation corresponds to K, which involves the kernel function.

Kernel PCA

• Given a test point x, the nonlinear principal component

$$v^T \varphi(x) = \sum_{i=1}^n \alpha_i(\varphi(x_i)^T \varphi(x)) = \sum_{i=1}^n \alpha_i k(x, x_i).$$

• From the angle of projection pursuit, the first kernel principal component maximizes the sample variance, i.e.,

$$\max_{\|v\|_{2}=1} \sum_{i=1}^{n} (v^{T} \varphi(x_{i}))^{2} = \max_{\|v\|_{2}=1} \|Yv\|_{2}^{2} = \max_{\|\alpha\|_{2}=1} \|Y^{T} \alpha\|_{2}^{2}$$
$$= \max_{\|\alpha\|_{2}=1} \alpha^{T} Y Y^{T} \alpha$$
$$= \max_{\|\alpha\|_{2}=1} \alpha^{T} K \alpha.$$

• Not robust: the influence function is not bounded for the L_2 norm.

- Classical robust approaches:
 - Projection pursuit.
 - Robust covariance estimation.
 - Robust loss function.
- Key issue: How to keep the kernel property for robust methods?
- Consider the robust L_1 norm,

$$\max_{v \in F, v^T v = 1} \sum_{i=1}^n |v^T \varphi(x_i)| = \max_{\|v\|_2 = 1} \|Yv\|_1.$$

• Since L_1 is not differentiable, is it still possible to hold the kernel structure?

- Matrix transposition invariant property
 - Lemma. Suppose $A \in \mathbf{R}^{n \times n}$ and $x \in \mathbf{R}^n$, define

$$||A||_{pr} = \max_{||x||_r=1} ||Ax||_p,$$

where $\|\cdot\|_p$ is a vector *p*-norm and *p*, r > 0, then

$$||A||_{pr} = ||A^T||_{sq},$$

where p and q (respectively, r and s) are conjugate, i.e. $\frac{1}{p} + \frac{1}{q} = 1, \ \frac{1}{r} + \frac{1}{s} = 1.$

• The classical Kernel PCA is a special case by taking p = 2 and r = 2.

- Choose p = 1 and r = 2 to address the robustness:
 - The L_1 projection pursuit in F is

$$\max_{v \in F, v^T v = 1} \sum_{i=1}^n |v^T \varphi(x_i)| = \max_{-1 \le \alpha_i \le 1} \sqrt{\alpha^T K \alpha} = \max_{\alpha \in B_n} \sqrt{\alpha^T K \alpha},$$

where $B_n = \{ \alpha = (\alpha_1, \dots, \alpha_n)^T : \alpha_i \in \{-1, 1\}, i = 1, \dots, n \}.$
Denote $\hat{\alpha} = \arg \max_{\alpha \in B_n} \alpha^T K \alpha$, and the projection direction
 $\hat{v} = \arg \max_{v^T v = 1} \sum_{i=1}^n |v^T \varphi(x_i)|,$ then

$$\hat{v} = \frac{1}{\sqrt{\hat{\alpha}^T K \hat{\alpha}}} \sum_{i=1}^n \hat{\alpha}_i \varphi(x_i).$$

 $- \hat{v}^T \varphi(x)$ is the kernel principal component.

- The second robust kernel principal component:
 - Define $v_1 = \hat{v}$ and $\alpha_1 = \hat{\alpha}$, where $v_1 = Y^T \alpha_1 / \sqrt{\alpha_1^T K \alpha_1}$.
 - Orthogonal to v_1 , it can obtained from v_1 's complement space Y_2 as

$$Y_2 = Y - Y v_1 v_1^T.$$

– The corresponding kernel matrix K_2

$$K_2 = Y_2 Y_2^T = K - \frac{1}{\alpha_1^T K \alpha_1} K \alpha_1 \alpha_1^T K.$$

- The rest calculation is similar as v_1 .

• Other robust kernel principal components can be calculated in the same way.

Sparsity Consideration

• Not 'sparse': the kernel principal component is in terms of every training vector,

$$v^T \varphi(x) = \sum_{i=1}^n \alpha_i k(x_i, x).$$

• Direct formulation on the sparseness

 $\max \qquad \alpha^T K \alpha \\ s.t. \qquad -1 \le \alpha_i \le 1, \\ \mathbf{Card}(\alpha) \le m,$

where m controls the level of sparsity.

• A non-convex constraint in quadratic programming.

Sparsity Consideration

• Since K is positive semi-definitive, the equivalent formulation by KKT condition is

 $\max \quad \alpha^T K \alpha \\ s.t. \quad -1 \le \alpha_i \le 1, \\ \mathbf{1}^T |\alpha| \le m,$

where $\mathbf{1}^T |\alpha| = |\alpha_1| + \cdots + |\alpha_n|$.

• Viewed as penalizing the cardinality, it becomes

$$\max \quad \alpha^T K \alpha - \rho \mathbf{Card}^2(\alpha)$$

s.t.
$$-1 \le \alpha_i \le 1.$$

Robust Interpretation for Sparsity Consideration

• Under the scheme of semidefinite programming (SDP), it is

$$\begin{aligned} \max \quad \mathbf{Tr}(KA) &- \rho \mathbf{Card}(A) \\ s.t. \quad -\mathbf{1}\mathbf{1}^T \leq A \leq \mathbf{1}\mathbf{1}^T, \\ \mathbf{Tr}(A) \leq m, \\ A \succeq 0, \ \mathbf{Rank}(A) = 1. \end{aligned}$$

• A relaxation form,

$$\begin{aligned} \max \quad \mathbf{Tr}(KA) &- \rho \mathbf{1}^T |A| \mathbf{1} \\ s.t. \quad -\mathbf{1}\mathbf{1}^T \leq A \leq \mathbf{1}\mathbf{1}^T, \\ \mathbf{Tr}(A) \leq m, \\ A \succeq 0. \end{aligned}$$

Robust Interpretation for Sparsity Consideration

• The Maxmin formulation,

$$\max_{-\mathbf{1}\mathbf{1}^T \le A \le \mathbf{1}\mathbf{1}^T, \ \mathbf{Tr}(A) \le m, \ A \succeq 0} \quad \min_{|\Delta_{ij}| \le \rho} \mathbf{Tr}(A(K + \Delta)).$$

• With the dual property, it is

min
$$\max_{-1 \le \alpha_i \le 1} \alpha^T (K + \Delta) \alpha$$

s.t. $|\Delta_{ij}| \le \rho, \quad i, j = 1, \dots, n.$

- It is the generalized maximum eignvalue problem with $\Delta \in \mathbf{R}^{n \times n}$.
- It corresponds to the worst-case formulation, with element-wise bounded disturbance of intensity ρ on the kernel matrix K.

Simulation Illustrations

• Using the Gaussian kernel $k(x,z) = \exp(-\frac{\|x-z\|^2}{2\sigma^2})$ with $\sigma^2 = 1$, where σ^2 is the parameter for the bandwidth.

• Our robust kernel PCA approach is not affected by the 2 outliers.

Simulation Illustrations

• 3 Gaussian clusters, each having 30 vectors; applying the Gaussian kernel $\exp(-\frac{\|x-z\|^2}{r^2})$, with r = 0.25; m = 0.5n.

• The method with sparsity consideration performs as well as the classical kernel PCA.

Conclusions

- A robust kernel PCA approach is proposed.
- Sparsity consideration on the robust kernel PCA.
- Robust interpretation for the sparsity property.

Simulation Illustrations

• Sparsity control level: m = 0.8n, utilizing the Gaussian kernel $k(x, z) = \exp(-\frac{||x-z||^2}{2})$.

• The robust kernel PCA approach with sparsity consideration still has the robust performance.