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‘ Kernel PCA I

Kernel PCA is to apply the PCA in the feature space F..

F is from the nonlinear mapping ¢

o:RP — F, x— .

Given the data z1,x9,...,x,, the sample covariance matrix in F'

TA
E (i) e(T;)

From the eignvalue equation C'v = v,

v = Z a;p(x;).
i=1
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‘ Kernel PCA I

e YYT and Y'Y have the same eignvalues, i.e., if
YY o = A,
then
Y'Y (Y'a) =AY Ta).
Hence, v =Y a =" a;0(xz;).

e Given the kernel function k(x;,z;) = ¢(z;)" ¢o(z;), YYT = K,

whose 7j-th element is k(x;,x;), and then

Ka = \a.

e The eignvector equation corresponds to K, which involves the

kernel function.



‘ Kernel PCA I

e Given a test point x, the nonlinear principal component
mn mn

vio(x) =) ai(e(z) (@) =) aik(z, ;).
i=1 i=1

e From the angle of projection pursuit, the first kernel principal
component maximizes the sample variance, i.e.,

n

max » (v ¢(x;))® = max [[Yv|3= max [[Y"alf3
folla=1 Joll2=1

— max ol YY7Ta
|al]2=1

e Not robust: the influence function is not bounded for the Lo

1NOr1I.



‘ Robust Kernel PCA I

Classical robust approaches:
— Projection pursuit.
— Robust covariance estimation.

— Robust loss function.
Key issue: How to keep the kernel property for robust methods?

Consider the robust L norm,

max Z\v (z;)] = max ||[Yo|;.

veF, vTv=1 |v]|2=1

Since L, is not differentiable, is it still possible to hold the kernel

structure?



‘ Robust Kernel PCA I

e Matrix transposition invariant property

— Lemma. Suppose A € R™*™ and = € R", define

|A[lpr = max Az,
=1

where | - ||, is a vector p-norm and p, r > 0, then
| Allpr = 147 [lsq,

where p and ¢ (respectively, r and s) are conjugate, i.e.
1,1 _ 9 1, 1_
E + ri 1, po + S = 1.

e The classical Kernel PCA is a special case by taking p = 2 and
r = 2.



‘ Robust Kernel PCA I

e Choose p =1 and r = 2 to address the robustness:

— The Lq projection pursuit in F' is

max Z\v = max ValKa= max Val'K

veF, vTv=1 —1<e;<1 a€B,

where B, = {a = (ay1,...,a,)! 1oy € {-1,1}, i=1,...,n}.

— Denote & = argmax,ecp, o’ Ko, and the projection direction
~ n T
U = argmax,r,—1 >, |V ¢(x;)|, then

U=

W Zow ;).

— 9% p(x) is the kernel principal component.



‘ Robust Kernel PCA I

e The second robust kernel principal component:
— Define v; = 9 and a; = &, where v; = Y1 a1 /v/al Ka;.

— Orthogonal to vy, it can obtained from v{’s complement space
Y5 as
Yo=Y — Yuui.

— The corresponding kernel matrix Ko

1

T

Ko =Y,V = K —
? 202 a; Koy

KCHO&,{K.

— The rest calculation is simliar as vy.

e Other robust kernel principal components can be calculated in
the same way.



Sparsity Consideration

e Not ‘sparse’: the kernel principal component is in terms of every

training vector,
mn
vl () = Z a;k(z;, ).
i=1
e Direct formulation on the sparseness

max ol Ka
s.t. —1 S 87 S 1,
Card(a) < m,

where m controls the level of sparsity.

e A non-convex constraint in quadratic programming.
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Sparsity Consideration

e Since K is positive semi-definitive, the equivalent formulation by
KKT condition is

max al' Ka
S.t. —1 S 07 < ]_,
17]a] < m,
where 17 |a| = |aq] 4+ -+ + |ay,|.

e Viewed as penalizing the cardinality, it becomes

max o’ Ka — pCard?(«)

s.t. 1< <1.
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‘ Robust Interpretation for Sparsity Consideration I

e Under the scheme of semidefinite programming (SDP), it is

max Tr(KA)— pCard(A)
s.t. —11' <A< 117,
Tr(A) < m,
A >0, Rank(A) = 1.

e A relaxation form,

max Tr(KA) - p1t|AJ]l
st. —-111 < A<11?,
Tr(A) < m,
A > 0.
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Robust Interpretation for Sparsity Consideration

e The Maxmin formulation,

max min Tr(A(K + A)).

e With the dual property, it is

min = max_j<q,<1 0’ (K + A)a

st. Ayl <p, 47=1,...,n.

e It is the generalized maximum eignvalue problem with
A e R™"™.

e It corresponds to the worst-case formulation, with element-wise

bounded disturbance of intensity p on the kernel matrix K.
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e Using the Gaussian kernel E(z.

where o2 is the parameter for the hanchvldth.

Simulation Illustrations

z) = exp(—

) with o2

15

15

e Our robust
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Simulation Illustrations

e 3 Gaussian clusters, each having 30 vectors: applyving the

| —=

2
—;L} with » = 0.25: 2 = 0.5n.

Gaussian kernel exp(—-—
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e The method with sparsity consideration performs as well as the
classical kernel PCA.
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‘ Conclusions I

e A robust kernel PCA approach is proposed.
e Sparsity consideration on the robust kernel PCA.

e Robust interpretation for the sparsity property.
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Simulation Illustrations

e Sparsity control level: m = 0.8n, utilizing the Gaussian kernel
y R ||lz—=||2
k(x,z) = exp(—+——).
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e The robust kernel PCA approach with sparsity consideration still

has the robust performance.



