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Kernel PCA

• Kernel PCA is to apply the PCA in the feature space F .

• F is from the nonlinear mapping ϕ

ϕ : Rp 7→ F, x 7→ y.

• Given the data x1, x2, . . . , xn, the sample covariance matrix in F

C =
1

n

n
∑

i=1

ϕ(xi)ϕ(xi)
T ,

1

n
Y T Y.

• From the eignvalue equation Cv = λv,

v =
n

∑

i=1

αiϕ(xi).
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Kernel PCA

• Y Y T and Y T Y have the same eignvalues, i.e., if

Y Y T α = λα,

then

Y T Y (Y T α) = λ(Y T α).

Hence, v = Y T α =
∑n

i=1 αiϕ(xi).

• Given the kernel function k(xi, xj) = ϕ(xi)
T ϕ(xj), Y Y T = K,

whose ij-th element is k(xi, xj), and then

Kα = λα.

• The eignvector equation corresponds to K, which involves the

kernel function.
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Kernel PCA

• Given a test point x, the nonlinear principal component

vT ϕ(x) =

n
∑

i=1

αi(ϕ(xi)
T ϕ(x)) =

n
∑

i=1

αik(x, xi).

• From the angle of projection pursuit, the first kernel principal

component maximizes the sample variance, i.e.,

max
‖v‖2=1

n
∑

i=1

(vT ϕ(xi))
2 = max

‖v‖2=1
‖Y v‖2

2 = max
‖α‖2=1

‖Y T α‖2
2

= max
‖α‖2=1

αT Y Y T α

= max
‖α‖2=1

αT Kα.

• Not robust: the influence function is not bounded for the L2

norm.
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Robust Kernel PCA

• Classical robust approaches:

– Projection pursuit.

– Robust covariance estimation.

– Robust loss function.

• Key issue: How to keep the kernel property for robust methods?

• Consider the robust L1 norm,

max
v∈F, vT v=1

n
∑

i=1

|vT ϕ(xi)| = max
‖v‖2=1

‖Y v‖1.

• Since L1 is not differentiable, is it still possible to hold the kernel

structure?
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Robust Kernel PCA

• Matrix transposition invariant property

– Lemma. Suppose A ∈ Rn×n and x ∈ Rn, define

‖A‖pr = max
‖x‖r=1

‖Ax‖p,

where ‖ · ‖p is a vector p-norm and p, r > 0, then

‖A‖pr = ‖AT ‖sq,

where p and q (respectively, r and s) are conjugate, i.e.
1
p

+ 1
q

= 1, 1
r

+ 1
s

= 1.

• The classical Kernel PCA is a special case by taking p = 2 and

r = 2.
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Robust Kernel PCA

• Choose p = 1 and r = 2 to address the robustness:

– The L1 projection pursuit in F is

max
v∈F, vT v=1

n
∑

i=1

|vT ϕ(xi)| = max
−1≤αi≤1

√
αT Kα = max

α∈Bn

√
αT Kα,

where Bn = {α = (α1, . . . , αn)T : αi ∈ {−1, 1}, i = 1, . . . , n}.
– Denote α̂ = arg maxα∈Bn

αT Kα, and the projection direction

v̂ = arg maxvT v=1

∑n
i=1 |vT ϕ(xi)|, then

v̂ =
1√

α̂T Kα̂

n
∑

i=1

α̂iϕ(xi).

– v̂T ϕ(x) is the kernel principal component.
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Robust Kernel PCA

• The second robust kernel principal component:

– Define v1 = v̂ and α1 = α̂, where v1 = Y T α1/
√

αT
1 Kα1.

– Orthogonal to v1, it can obtained from v1’s complement space

Y2 as

Y2 = Y − Y v1v
T
1 .

– The corresponding kernel matrix K2

K2 = Y2Y
T
2 = K − 1

αT
1 Kα1

Kα1α
T
1 K.

– The rest calculation is simliar as v1.

• Other robust kernel principal components can be calculated in

the same way.
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Sparsity Consideration

• Not ‘sparse’: the kernel principal component is in terms of every

training vector,

vT ϕ(x) =

n
∑

i=1

αik(xi, x).

• Direct formulation on the sparseness

max αT Kα

s.t. −1 ≤ αi ≤ 1,

Card(α) ≤ m,

where m controls the level of sparsity.

• A non-convex constraint in quadratic programming.
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Sparsity Consideration

• Since K is positive semi-definitive, the equivalent formulation by

KKT condition is

max αT Kα

s.t. −1 ≤ αi ≤ 1,

1T |α| ≤ m,

where 1T |α| = |α1| + · · · + |αn|.

• Viewed as penalizing the cardinality, it becomes

max αT Kα − ρCard2(α)

s.t. −1 ≤ αi ≤ 1.
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Robust Interpretation for Sparsity Consideration

• Under the scheme of semidefinite programming (SDP), it is

max Tr(KA) − ρCard(A)

s.t. −11T ≤ A ≤ 11T ,

Tr(A) ≤ m,

A � 0, Rank(A) = 1.

• A relaxation form,

max Tr(KA) − ρ1T |A|1
s.t. −11T ≤ A ≤ 11T ,

Tr(A) ≤ m,

A � 0.
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Robust Interpretation for Sparsity Consideration

• The Maxmin formulation,

max
−11T ≤A≤11T , Tr(A)≤m, A�0

min
|∆ij |≤ρ

Tr(A(K + ∆)).

• With the dual property, it is

min max−1≤αi≤1 αT (K + ∆)α

s.t. |∆ij | ≤ ρ, i, j = 1, . . . , n.

• It is the generalized maximum eignvalue problem with

∆ ∈ Rn×n.

• It corresponds to the worst-case formulation, with element-wise

bounded disturbance of intensity ρ on the kernel matrix K.
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Conclusions

• A robust kernel PCA approach is proposed.

• Sparsity consideration on the robust kernel PCA.

• Robust interpretation for the sparsity property.
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