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What is Reliability?

• Reliability: Probability a system will perform as
intended for at least a given time period when
operated under specific conditions
– Probability – measure of the likelihood of success

– System – specify the boundaries of what will be
considered the system

– As Intended – need to specify success/failure of the
system

– Time period – assuming system will degrade over time

– Under specific conditions – boundaries on model use

• Definition has been simplified to the study of

! 

R(t) = P(T > t) = f (x)dx
t
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21st Century Problems



Reliability Today

• Must address future technology challenges
and current business practices

• Must address decision processes –
performance, safety, surety, cost, schedule,
production, aging, design change,
maintenance, quality, maintainability, policy,
…

• Reliability ala earlier definition

Bridge
the
Gap



The Hard Lesson

• Problem is not Modeling, it is  Decision Making

• Optimal decision-making requires diversity of
information:

– Sources of information - theoretical models, test

data, computer simulations, expertise and expert

judgment (from scientists, field personnel, decision-

makers…)

– Content of the information -  information about
system structure and behavior, decision-maker
constraints, options, and preferences…

– Multiple communities that are stakeholders in the
decision process



Reliability Today 
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Integrated System Assessment



Challenges for Integrated System Assessments

• No full system tests

• Aging system (subsystem, components)

• Need to integrate science/engineering

knowledge, models, and simulations

• Integrate information/data at various levels:

system, subsystem, components, similar systems

• Choose best data to collect based on information

per unit cost

• Integrate a variety of reliability representations

• Varied data types and collection schemes

• Model and measurement bias/uncertainty



Goal: Continuous Evaluation
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Application Drivers



Statistical Sciences is Key!

Core Questions:

– What are methods for collecting information relevant

to system performance from a variety of sources not

traditionally used?

– What are methods for integrating and analyzing the

information with quantifiable confidence in the

resulting system performance?

– What are methods for quantifying and evaluating the

quality of these non-traditional sources of information?

– What are methods for evaluating resource allocation in

the presence of incomplete and heterogeneous

information?



Design

Data

Models

Estimation

Inference

Overall strategy to
connect phases and
optimize results



Army/Navy/Marines: Munitions Systems

 

• Goal: Ascertain the current reliability, and life 
extension of weapons stockpile.

    Want a precise answer to a broad question

• Information: Heterogeneous sources

– Historical field data

– Subsystem/component tests

– Accelerated life tests

– Computer simulations

– Engineering experience

– Expert judgment



Notional System and Data Inventory

Historical Field

Test Data
No Test Data

Computer

Simulation

Engineering Judgment: 

Similar reliability components

Accelerated Life Test

Like Mod 2,

which we

have tested



Weapon Round

Reliability

Flight Tests
No Flight Tests
95% Interval

System and Component Reliability

 



Inference

Reliability

Subsystem A; No Data

Flight Tests
No Flight Tests

Reliability

Subsystem B; Have Data

Flight Tests
No Flight Tests

 



Design Issues and Future Data Collection
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Computer

Simulation
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Choice of New Data to collect related to:

• How important is that component/subsystem to the

reliability of the system?

– Less need to sample from a highly reliable

component

• How well is reliability for that component already

understood?

– Diminishing returns on increases sample size

• Relative improvement to precision relative to cost of

collecting data?

– For a fixed budget, getting more “less informative

pieces of data” may improve overall precision



Design and Prototype Example:
Missile Defense Agency (MDA)

• PROGRAM:  Fly a high-fidelity, threat-

representative missile system for

Theater Missile Defense data collection

and interoperability exercise

• GOAL: “Quantify the probability of

mission success” and identify “areas of

unacceptable risk” to the program

• ISSUES

- Multiple partners and contractors

- High reliability demanded

- Full system testing not an option

- System requirements dynamic

- Diverse data sources



Notional Trajectory



• Capture social, cultural, physical aspects system

– All “aspects” could constrain the system from

functioning

• Map the decision Domain

– Need a compact and dynamic graphical language for

describing complex system structure

– Must require consistent integration of information on

component composition with behaviors

– Representation must be able to be used to infer

system-wide behaviors from observed and/or elicited

information

System Ethnography and Qualitative Modeling



Elements of System Ethnography

– Entities – basic concepts of model

– Channels – descriptions of entity relationships (social and/or

technical causal structures)

– Activities – phases of the mission and outcomes

– Variants – distinct but related versions of the system

•  Meta model that describes the information observed

    or inferred from the system

•  Deductive and Inductive structure



USERS: Requirements
(To be defined)

BMDO: Threat Definition
(Pending BMDO approval)
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Classes of Decision Elements

• Mechanical Elements

! Booster and payload

!  Launch site and launch equipment

!Data collection

• Social Elements

! System Builders: SMDC, Lincoln Laboratory, Orbital

!User Community: MDA, Patriot, THAAD, Navy, ….

• Threat Definition: The Scenario

! Primary experiments, Secondary Experiments,
Events, Metrics, Dependencies

!Requirements from User Community

!What is success? What is failure?



EVENTS IN SCENARIO
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CMP Model: Event Diagram



Functional Decomposition



Functional and Component Decomposition

 Able to derive statistical models from dependency structure



Notional Mission Success
Estimates of mission success (full distributions available)

• Mission yellow is most likely (60% ± 10%)

• Mission red is second (25% ± 5%)

• Mission green is third (15% ± 5%)

•  Backward chaining through system conditioned on

   state outcomes

– Decompose estimates into parts, subsystems,

          and functions that contribute to size and variability of estimates



Example:  JIMO

• Jupiter Icy Moons Orbiter Project (JIMO) is a conceptual phase
project to build and deploy an unmanned spacecraft to explore
the moons of Jupiter as part of a 10-15 year mission

• Exploring alternative designs for on-board nuclear reactor to
supply electrical power by removing heat from the reactor

– 2 variants using heat pipes

– 2 variants using liquid metal



• Provides an ability to do on-going reliability

trade-off studies as design changes

• Provides a quick way to explore implications

of component behavior on system through

forward propagation

• Provides a means to explore unexpected

system outcomes, to design telemetry, or

design system experiments through

backward chaining

JIMO: Integrated Reliability Assessment



Integrated Reliability Assessment Spiral

System Model Building

Reliability Estimates for 

Components & Sub-systems

Obtain System 

Reliability Estimates
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Driven by current understanding

System Model
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Reliability Estimates for 
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Obtain System 

Reliability Estimates



New Era of Statistical Design of Experiments

• Statistical Design of Experiments provides efficient

techniques for allocating resources to different sets

of experimental conditions

• Designs have traditionally dealt with single

information sources (e.g., physical experiment),

albeit multivariate in the response

• Designs need to account for cost limitations,

heterogeneous sources of information, statistical

methodology available for building response

functions and predictions

• Analysis needs to evolve to accommodate non-

normal and functional inputs and responses



 F-22 Launch Risk

• Goal:  Optimize flight test matrix – reduce cost!

– Describe uncertainty about missile trajectories at

design points

• Multiple information sources -- use previous flight tests,

wind tunnel tests, CFD, and expert judgment to describe

trajectories of new flight tests

• Spatial/Temporal domain -- must model flight tests, wind

tunnels, and CFD trajectories and their relationship to

one another so that wind tunnel and CFD can inform

about new flight tests.



Flight Envelop Characterization



Trajectory Bounds



Visualization of Simulated Trajectories



2-D Confidence Intervals



Assessing Risk: Optimizing Data Collection



New Data Types – Functional Responses

• Collecting large amounts of data on
each item may be possible

– measurements over time, spectra,
digital imaging, …

• Coping with the full richness of the
data may be overwhelming

– capturing the critical features of the
data is desirable

• Key issues:

– Reduce dimensionality, but capture
important features

– Parametrics / non-parametric



Functional Data + Optimal Design

Functional Data + Optimal Design

Example – Functional Component Data



Assessing Designs: Many facets to consider

• Quality of estimation of model parameters

• Quality of prediction in design space

• Cost

• “Pure error estimate” available

• Ability to test adequacy of model assumptions

(additional terms, variance assumptions, etc.)

• Flexibility for collecting data

• Robust to missing or erroneous data



Design Assessment Tools

• Optimality criteria (for estimation/prediction)

– Often too simplistic to capture all the important
aspects of the design

• Graphical tools

– Richer comparisons possible
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• Become leaders in the science
integration process!

• Understand the problem space

• Embrace consequences of the
technology explosion

• Communication

  Conclusions



Parting Thought: Our Intellectual Property Matters 
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