

Northern New Mexico

place: po box 1663

An <u>n</u>-sequence of complexes: $\{\overline{X}_{0}^{(m)}, ..., \overline{X}_{n-1}^{(m)}\}$. If $o_{1-1}^{(m-1)'}$ is a permutation of $o_{1-1}^{(m-1)}$, then **#** the sequence $\{\overline{X}_{0}^{(m)}, ..., \overline{X}_{(m-1)}^{(m)}\}$ is a permutation of the sequence $\{\overline{X}_{0}^{(m)}, ..., \overline{X}_{n-1}^{(m)}\}$. A sequence $\{\overline{X}_{0}^{(m)}, ..., \overline{X}_{n-1}^{(m)}\}$ is monotone is its elements appear in their order of precedence $\overline{X}_{1}^{(m)} \le \overline{X}_{1}^{(m)} \le ... \le \overline{X}_{1}^{(m)} \le ... \le \overline{X}_{n-1}^{(m)}$. Every sequence formation $\{\overline{X}_{0}^{(m)}, ..., \overline{X}_{n-1}^{(m)}\}$

s Logical Automata

4.0 SEC.

- IOO METERS

Technology

Community

Building An Institution—

Dutline **Reliability and Role of Statistical** Sciences **Science/Application Drivers** Examples -End-to-end assessment System Ethnography and Design **– Design of Experiments** Conclusions

Cast of Collaborators

- Alyson Wilson
- Deborah Leishman
- Ron Smith
- Jane Booker
- Bill Meeker
- Nozer Singpurwalla
- Shane Reese
- Greg Wilson
- Mary Meyer
- Todd Graves
- Richard Klamman
- Laura McNamara
- Lisa Moore
- Kathy Campbell
- Christine Anderson-Cook
- Ben Sims

- David Scott
- Art Dempster
- Harry Martz
- Mike Hamada
- Andrew Koehler
- Val Johnson
- Dave Higdon
- Tom Bement
- Nick Hengartner
- Joanne Wendelberger
- Mike McKay
- Jerry Morzinski
- Max Morris
- Steve Vardeman
- Brian Williams
- Elizabeth Kelly

What is Reliability?

- Reliability: Probability a system will perform as intended for at least a given time period when operated under specific conditions
 - Probability measure of the likelihood of success
 - System specify the boundaries of what will be considered the system
 - As Intended need to specify success/failure of the system
 - Time period assuming system will degrade over time
 - Under specific conditions boundaries on model use
- Definition has been simplified to the study of

$$R(t) = P(T > t) = \int_{-\infty}^{\infty} f(x) dx = 1 - F(t)$$

t

21st Century Problems

Reliability Today

- Must address future technology challenges and current business practices
- Must address decision processes performance, safety, surety, cost, schedule, production, aging, design change, maintenance, quality, maintainability, policy,

Bridge the Gap

Reliability ala earlier definition

The Hard Lesson

- Problem is **not** Modeling, it is **Decision** Making
- Optimal decision-making requires diversity of information:
 - Sources of information theoretical models, test data, computer simulations, expertise and expert judgment (from scientists, field personnel, decisionmakers...)
 - Content of the information information about system structure and behavior, decision-maker constraints, options, and preferences...
 - Multiple communities that are stakeholders in the decision process

Challenges for Integrated System Assessments

- No full system tests
- Aging system (subsystem, components)
- Need to integrate science/engineering knowledge, models, and simulations
- Integrate information/data at various levels: system, subsystem, components, similar systems
- Choose best data to collect based on information per unit cost
- Integrate a variety of reliability representations
- Varied data types and collection schemes

Model and measurement bias/uncertainty

Goal: Continuous Evaluation

Statistical Sciences is Key!

Core Questions:

- What are methods for collecting information relevant to system performance from a variety of sources not traditionally used?
- What are methods for integrating and analyzing the information with quantifiable confidence in the resulting system performance?
- What are methods for quantifying and evaluating the quality of these non-traditional sources of information?
- What are methods for evaluating resource allocation in the presence of incomplete and heterogeneous information?

Army/Navy/Marines: Munitions Systems

• Goal: Ascertain the current reliability, and life extension of weapons stockpile.

Want a precise answer to a broad question

- Information: Heterogeneous sources
 - Historical field data
 - Subsystem/component tests
 - Accelerated life tests
 - Computer simulations
 - Engineering experience
 - Expert judgment

Notional System and Data Inventory

System and Component Reliability

Reliability

Inference

Design Issues and Future Data Collection

Choice of New Data to collect related to:

- How important is that component/subsystem to the reliability of the system?
 - Less need to sample from a highly reliable component
- How well is reliability for that component already understood?
 - Diminishing returns on increases sample size
- Relative improvement to precision relative to cost of collecting data?
 - For a fixed budget, getting more "less informative pieces of data" may improve overall precision

Design and Prototype Example: Missile Defense Agency (MDA)

- **PROGRAM:** Fly a high-fidelity, threatrepresentative missile system for Theater Missile Defense data collection and interoperability exercise
- GOAL: "Quantify the probability of mission success" and identify "areas of unacceptable risk" to the program
 ISSUES
 - Multiple partners and contractors
 - High reliability demanded
 - Full system testing not an option
 - System requirements dynamic
 - Diverse data sources

Notional Trajectory

System Ethnography and Qualitative Modeling

- Capture social, cultural, physical aspects system
 - All "aspects" could constrain the system from functioning
- Map the decision Domain
 - Need a compact and dynamic graphical language for describing complex system structure
 - Must require consistent integration of information on component composition with behaviors
 - Representation must be able to be used to infer system-wide behaviors from observed and/or elicited information

Elements of System Ethnography

- Meta model that describes the information observed or inferred from the system
- Deductive and Inductive structure

- Entities basic concepts of model
- Channels descriptions of entity relationships (social and/or technical causal structures)
- Activities phases of the mission and outcomes
- Variants distinct but related versions of the system

Notional Preliminary Representation

Classes of Decision Elements

- Mechanical Elements
 - Booster and payload
 - Launch site and launch equipment
 - Data collection
- Social Elements
 - System Builders: SMDC, Lincoln Laboratory, Orbital
 - User Community: MDA, Patriot, THAAD, Navy,
- Threat Definition: The Scenario
 - Primary experiments, Secondary Experiments, Events, Metrics, Dependencies
 - Requirements from User Community

- What is success? What is failure?

Notional Events to System

RUN SPACE/TIME

RICE

CMP Model: Event Diagram

Functional Decomposition

Able to derive statistical models from dependency structure

Notional Mission Success

Estimates of mission success (full distributions available)

- Mission yellow is most likely (60% ± 10%)
- Mission red is second (25% ± 5%)
- Mission green is third $(15\% \pm 5\%)$
- Backward chaining through system conditioned on

state outcomes

- Decompose estimates into parts, subsystems,
 - and functions that contribute to size and variability of estimates

- Jupiter Icy Moons Orbiter Project (JIMO) is a conceptual phase project to build and deploy an unmanned spacecraft to explore the moons of Jupiter as part of a 10-15 year mission
- Exploring alternative designs for on-board nuclear reactor to supply electrical power by removing heat from the reactor
 - 2 variants using heat pipes
 - 2 variants using liquid metal

JIMO: Integrated Reliability Assessment

- Provides an ability to do on-going reliability trade-off studies as design changes
- Provides a quick way to explore implications of component behavior on system through forward propagation
- Provides a means to explore unexpected system outcomes, to design telemetry, or design system experiments through backward chaining

New Era of Statistical Design of Experiments

- Statistical Design of Experiments provides efficient techniques for allocating resources to different sets of experimental conditions
- Designs have traditionally dealt with single information sources (e.g., physical experiment), albeit multivariate in the response
- Designs need to account for cost limitations, heterogeneous sources of information, statistical methodology available for building response functions and predictions
- Analysis needs to evolve to accommodate nonnormal and functional inputs and responses

F-22 Launch Risk

- Goal: Optimize flight test matrix reduce cost!
 - Describe uncertainty about missile trajectories at design points
- Multiple information sources -- use previous flight tests, wind tunnel tests, CFD, and expert judgment to describe trajectories of new flight tests
- Spatial/Temporal domain -- must model flight tests, wind tunnels, and CFD trajectories and their relationship to one another so that wind tunnel and CFD can inform about new flight tests.

Flight Envelop Characterization

Trajectory Bounds

AoA = 5.6, load = 2.9, mach = 1.2, pressure = 1432

Visualization of Simulated Trajectories

2-D Confidence Intervals

Assessing Risk: Optimizing Data Collection

New Data Types – Functional Responses

- Collecting large amounts of data on each item may be possible
 - measurements over time, spectra, digital imaging, …
- Coping with the full richness of the data may be overwhelming
 - capturing the critical features of the data is desirable
- Key issues:
 - Reduce dimensionality, but capture important features
 - Parametrics / non-parametric

Example – Functional Component Data

Functional Data + Optimal Design

Assessing Designs: Many facets to consider

- Quality of estimation of model parameters
- Quality of prediction in design space
- Cost
- "Pure error estimate" available
- Ability to test adequacy of model assumptions (additional terms, variance assumptions, etc.)
- Flexibility for collecting data
- Robust to missing or erroneous data

Design Assessment Tools

- Optimality criteria (for estimation/prediction)
 - Often too simplistic to capture all the important aspects of the design
- Graphical tools
 - Richer comparisons possible

In General: Tools are Critically Needed

Conclusions Become leaders in the science integration process Understand the problem space Embrace consequences of the technology explosion Communication

Parting Thought: Our Intellectual Property Matters

