Skill, ROC curves, and optimal forecast combination

Matt Briggs<br>Cornell<br>Russel Zaretzki<br>U Tennesse

June 2006

$$
\begin{aligned}
& \text { Probability forecast } \\
& \text { raw } \text { Medical diagn } \\
& \text { decision } X=[0,1] \\
& \widetilde{X} \in \Re \\
& \text { PoP } X=I(\widetilde{X}>\gamma) \\
& 50 \% \text { chance rain } \begin{array}{l}
\text { Appendicitis }
\end{array} \\
& \text { white blood count }
\end{aligned}
$$

Medical diagnosis

Loss ( $k_{Y X}$ ) matrix

$$
\begin{array}{l|ll} 
& Y=1 & Y=0 \\
X=1 & 0 & \gamma \\
X=0 & 1-\gamma & 0
\end{array}
$$

Optimal Naive Forecast

$$
\begin{gathered}
\theta_{y}=P(Y=1) \\
O N F=I\left(\theta_{y}>\gamma\right) \equiv 0
\end{gathered}
$$

Model

$$
\begin{gathered}
P(y, x)=\theta_{y x}=\theta_{y \mid x} \theta_{x} \\
L(y, x \mid \theta)=\theta_{1 \mid 1}^{y x}\left(1-\theta_{1 \mid 1}\right)^{(1-y) x} \times \\
\theta_{0 \mid 0}^{(1-y)(1-x)}\left(1-\theta_{0 \mid 0}\right)^{y(1-x)} \times \\
\theta_{x}^{x}\left(1-\theta_{x}\right)^{1-x}
\end{gathered}
$$

$p\left(\theta_{1 \mid 1}, \quad \theta_{0 \mid 0}, \theta_{x}\right)=p\left(\theta_{1 \mid 1}\right) p\left(\theta_{0 \mid 0}\right) p\left(\theta_{x}\right)$

$$
\sim " B e_{\theta_{1 \mid 1}}(0,0) \times B e_{\theta_{0 \mid 0}}(0,0) \times B e_{\theta_{x}}(0,0) "
$$

$$
\begin{aligned}
p\left(\theta_{1 \mid 1} \mid y, x\right) & \sim \operatorname{Be}\left(n_{11}, n_{01}\right) \\
p\left(\theta_{0 \mid 0} \mid y, x\right) & \sim \operatorname{Be}\left(n_{00}, n_{10}\right) \\
p\left(\theta_{x} \mid y, x\right) & \sim \operatorname{Be}\left(n_{\cdot 1}, n_{0}\right) \\
E\left(\theta_{1 \mid 1} \mid y, x\right) & =\frac{n_{11}}{n_{11}+n_{01}} \\
E\left(\theta_{0 \mid 0} \mid y, x\right) & =\frac{n_{00}}{n_{00}+n_{10}} \\
E\left(\theta_{x} \mid y, x\right) & =\frac{n_{11}+n_{01}}{n . .}
\end{aligned}
$$

Skill score

\[

\]

$$
\begin{aligned}
E\left(k^{O N F}\right) & =\theta_{y}(1-\gamma) \\
& =\left(\theta_{1 \mid 1} \theta_{x}+\left(1-\theta_{0 \mid 0}\right)\left(1-\theta_{x}\right)\right)(1-\gamma) \\
E\left(k^{E}\right) & =\theta_{1 \mid 1} \theta_{x} \gamma+\left(1-\theta_{0 \mid 0}\right)\left(1-\theta_{x}\right)(1-\gamma)
\end{aligned}
$$

$$
\begin{aligned}
K_{\gamma} & =\frac{E\left(k^{O N F}\right)-E\left(k^{E}\right)}{E\left(k^{O N F}\right)} \\
& =\frac{\theta_{x}\left(\theta_{1 \mid 1}-\gamma\right)}{\theta_{y}(1-\gamma)}
\end{aligned}
$$

Skill : $K_{1 / 2}>0$
Value : $K_{\gamma}>0$

$$
P\left(K_{\gamma}>0 \mid y, x\right) \longleftrightarrow P\left(\theta_{1 \mid 1}>\gamma \mid y, x\right)
$$

$$
E\left(K_{\gamma} \mid y, x\right)=\frac{n_{11}(1-\gamma)-n_{01} \gamma}{\left(n_{11}+n_{10}\right)(1-\gamma)}
$$

$$
E\left(K_{1 / 2} \mid y, x\right)=\frac{n_{11}-n_{01}}{n_{11}+n_{10}}
$$

## Example 1: Mammograms

$$
\begin{array}{l|ll} 
& Y=1 & Y=0 \\
X=1 & 7 & 70 \\
X=0 & 1 & 922
\end{array}
$$

$$
\operatorname{Accuracy}\left(X^{O N F}\right)=97 \% \quad \text { Accuracy }\left(X^{E}\right)=93 \%
$$

$$
\widehat{K}_{1 / 2}=-7.9 \quad\left(\gamma<\frac{1}{11} \rightarrow K_{\gamma}>0\right)
$$

$$
P\left(K_{1 / 2}>0 \mid y, x\right)=P\left(\theta_{1 \mid 1}>1 / 2 \mid y, x\right) \approx 10^{-15}
$$

Continuous forecasts skill score

$$
\begin{aligned}
F_{j}= & P\left(Y=j, X \leq x_{c}\right) \\
K_{\gamma, x_{c}}= & \frac{(1-\gamma) F_{1}-\gamma F_{0}}{\theta_{y}(1-\gamma)} I_{0}+ \\
& \frac{-(1-\gamma) F_{1}+\gamma F_{0}}{\left(1-\theta_{y}\right) \gamma}\left(1-I_{0}\right) \\
& \left(I_{0}=I\left(\theta_{y} \leq \gamma\right)\right)
\end{aligned}
$$

Optimal decision point

$$
x_{*}=\left\{x: \frac{f(x \mid Y=1)}{f(x \mid Y=0)}=\frac{\gamma}{1-\gamma} \frac{1-\theta_{y}}{\theta_{y}}\right\}
$$

$\equiv$ Bayesian classifier
$\equiv$ ROC curve decision

Example 2: Appendicitis

$$
X=I\left(\text { White Blood Count }>x_{c}\right)
$$

$$
\begin{array}{ll}
=1 & \text { Cut open } \\
=0 & \text { Send home }
\end{array}
$$








Example 3: Combine Two Forecasts: $A, B \in[0,1]$

$$
\begin{aligned}
& X=I(w A+(1-w) B>\gamma) \\
& (A=\text { Humans }, \quad B=\mathrm{MOS})
\end{aligned}
$$

If

$$
A, B \in\{0,1\}, \quad K_{B}>K_{A}
$$

Then

$$
w=0, \quad \widetilde{X} \equiv B
$$


$Y=0$


B
$Y=1$





$$
\widehat{K}_{A}=0.33, \widehat{K}_{B}=0.40, \widehat{K}_{X}=0.43
$$

Actual forecast

$$
\begin{aligned}
X & =I(w A+(1-w) B>\gamma) \\
X & =I\left(B>\frac{\gamma}{(1-w)}-\frac{w}{(1-w)} A\right)
\end{aligned}
$$




