The Comparison of Two Measurement Devices

2006 Joint Research Conference June 7-9, 2006

Joseph G. Voelkel (Bruce Siskowski CQAS, COE, RIT Reichert, Inc.)

Topics

- Problem, Example, Mathematical Model
- Comparison: Regression? Bland-Altman?
- More Models, Identifiability Problem, Bland-Altman
- A Richer Data Set and a Larger Model
- Comparison to Gage R\&R
- Mandel's Estimates
- Data Analysis

- Informal-Graphs, Background Assumptions
- Formal-Likelihood Methods

The Problem

- Two measuring devices need to be compared
- Say, new vs old
- (Can extend to more than two...)
- No Standard
- No standard exists for what is the right answer
- A standard exists but is hard to come by - \$\$
- A standard exists but is not realistic

The Problem

- Examples
- Blood pressure
- Cardiac Output

*Fick method
* Dyel dilution
*Thermal dilution
- "Correct" answer hard to come by
- "Gold Standard" also has measurement error

Tonometer Example

- Medical screening device that measures intraocular pressure of the human eye.
- Pressure acts on retina and optic nerve.
- Increased sustained pressures above 23mm Hg can lead to vision loss condition-glaucoma.
- If tonometer indicates possible risk, an M.D. of ophthalmology runs other detailed tests for a more accurate diagnosis.

Tonometer Example

- Problem with tonometer calibration
- Difficult to put pressure sensors inside the human eye (!) to measure "exact" values
- Sensor insertion surgery exists but would change the eye anyway...
- Original gold standard is Goldman Applanation Tonometer (GAT) that touches the eye

- Example of a contact tonometer

Tonometer Example

- Reichert invented several non-contact air-puff versions since 1972 that
- Do not require eye anesthetic drops
- Do reduce operator variation via computerized automation.
- Reichert's goal is to employ better statistical tests to see if Reichert tonometers have less measurement
 repeatability variation than the GAT
- Most popular technique (Bland-Altman) only checks "agreement" and bias (more to follow)

Tonometer Example

- Two tonometers (different models). The reference device is called MD_{x} and the device under test is MD_{y}
- Example slightly simplified from original study. Only measurements of the left eye, in mm Hg . (Coded.)
- Study performed by selecting a sample of subjects. Each subject measured with $M D_{x}$ and then with MD_{y}

Data

Data

Are the Two Devices Equivalent? And Other Questions...

-What does it mean to say "equivalent"?

- And if they are not equivalent, in what way are they not equivalent?

A (Tentative) Mathematical Model

A Mathematical Model

1. Where did these subjects come from??

- Our x_{i} 's...

A Mathematical Model

$$
x_{i} \sim \operatorname{ind} N\left(\mu_{x}, \sigma_{x}^{2}\right)
$$

3. What do we observe?

$$
X_{i}=x_{i}+e_{i}, \quad e_{i} \sim \operatorname{ind} N\left(0, \sigma_{e}^{2}\right)
$$

e_{i} is the x_{i} measurement error

A Mathematical Model

- The x distribution and, say, x_{l}

$$
x_{i} \sim \operatorname{ind} N\left(\mu_{x}, \sigma_{x}^{2}\right)
$$

A Mathematical Model

- The x distribution and, say, x_{1}
- The X distribution at x_{1}. Also, X_{1}

$$
X_{i}=x_{i}+e_{i}, \quad e_{i} \sim \operatorname{ind} N\left(0, \sigma_{e}^{2}\right)
$$

A Mathematical Model, under Equivalency

4. What about the y_{i} 's?

- Should have some connection to the x_{i} 's...
- Equivalency \equiv

Model 1

$$
\begin{aligned}
& y_{i}=x_{i} \\
& Y_{i}=y_{i}+u_{i}, \quad u_{i} \sim \operatorname{ind} N\left(0, \sigma_{u}^{2}\right) \\
& \sigma_{u}^{2}=\sigma_{e}^{2}
\end{aligned}
$$

Topics

- Problem, Example, Mathematical Model

Comparison: Regression? Bland-Altman?

- More Models. Identifiability Problem, Bland-Altman
- A Richer Data Set and a Larger Model
- Comparison to Gage R\&R
- Mandel's Estimates
- Data Analysis
- Informal-Graphs, Background Assumptions
- Formal-Likelihood Methods

Regression? Gap in Theory vs Practice

- Medical researchers $\quad \hat{\beta}_{X Y}=0.86$ s.e. $=0.07$
- Regression of X on Y ?
- Regression of Y on X ?
- Correlation of Y and $X ?^{\frac{1}{2}}$
$\hat{\beta}_{X Y}=0.70$ s.e. $=0.06$
 20
15
15

Bland-Altman

- Instead of Y vs X...
- Plot Y-X vs average(Y \& X)
- An example of a difference-mean plot
- Then look for agreement
- Very popular. One of the 10 most highly cited papers in statistics.

Bland-Altman

- Use graph to check for
- Outliers
- Linear trends, bias

- More Spread at higher Aver(X\&Y) values
*If so, try log transformation
- If all OK, summarize agreement by s.e. $(\mathrm{X}-\mathrm{Y})$
- Here, if only use $\mathrm{N}=91$, get s.e. $=2.0$
- Bland-Altman has become a standard method, accepted way to make comparisons

Topics

- Problem, Example, Mathematical Model
- Comparisons: Regression? Bland-Altman?
- More Models. Identifiability Problem, Bland-Altman
- A Richer Data Set and a Larger Model
- Comparison to Gage R\&R
- Mandel's Estimates
- Data Analysis
- Informal—Graphs, Background Assumptions
- Formal—Likelihood Methods

Back to Model Thinking...

- So far, have just defined "equivalent" devices.
- More generally, consider model with possible linear bias

Model 2	$x_{i} \sim \operatorname{ind} N\left(\mu_{x}, \sigma_{x}^{2}\right)$ $y_{i}=\beta_{0}+\beta_{1} x_{i}$ $X_{i}=x_{i}+e_{i}, e_{i} \sim \operatorname{ind} N\left(0, \sigma_{e}^{2}\right)$ $Y_{i}=y_{i}+u_{i}, u_{i} \sim \operatorname{ind} N\left(0, \sigma_{u}^{2}\right)$ $\sigma_{u}^{2}=\sigma_{e}^{2}$

Another Model...

- Last model—possible linear bias but same measurement s.d.'s
- This model-no linear bias but possible different measurement s.d.'s

$$
\begin{aligned}
& x_{i} \sim \operatorname{ind} N\left(\mu_{x}, \sigma_{x}^{2}\right) \\
& y_{i}=x_{i} \\
& X_{i}=x_{i}+e_{i}, e_{i} \sim \operatorname{ind} N\left(0, \sigma_{e}^{2}\right) \\
& Y_{i}=y_{i}+u_{i}, u_{i} \sim \operatorname{ind} N\left(0, \sigma_{u}^{2}\right)
\end{aligned}
$$

And Another Model...

- A model with possible linear bias and different measurement s.d.'s

Model 3

$$
\begin{aligned}
& x_{i} \sim \operatorname{ind} N\left(\mu_{x}, \sigma_{x}^{2}\right), \quad y_{i}=\beta_{0}+\beta_{1} x_{i} \\
& X_{i}=x_{i}+e_{i}, e_{i} \sim \operatorname{ind} N\left(0, \sigma_{e}^{2}\right) \\
& Y_{i}=y_{i}+u_{i}, u_{i} \sim \operatorname{ind} N\left(0, \sigma_{u}^{2}\right)
\end{aligned}
$$

- Very reasonable. MD_{x} and MD_{y} measuring the same feature, but possibly un-calibrated and possibly with different precision.
- Models 1-3: "structural," "measurement-error," models (Fuller (1987))

Literature ...

- Vast literature on this and related problems
- Lord (1960), Grubbs (1948), Pearson (1902); Thompson (1963), Jaech (...)
*Estimating var's in instruments w/o repeats
- Wald (1940), Geary (1949), Tukey (1951)
* Use of add'I info: Instrumental variables
- Mandel (1959), Cochran (1968)
* Interlab comparison; survey examples.
- Lindley (1947), Neyman (1951), Kendall (1951), Wolfowitz (1952), Madansky (1959), Berkson (1950), Box (1961)

Information in the Data for Model 3?

- Under Model 3 assumptions, it is well known that the minimal sufficient statistic is 5 -dimensional:

$$
\bar{X}, \bar{Y}, s_{X}^{2}, s_{Y}^{2}, r_{X, Y}(\mathrm{or} \widehat{\operatorname{Cov}}(X, Y))
$$

$$
\mu_{x}, \sigma_{x}^{2}, \beta_{0}, \beta_{1}, \sigma_{e}^{2}, \sigma_{x}^{2}
$$

$$
\begin{aligned}
& x_{i} \sim \operatorname{ind} N\left(\mu_{x}, \sigma_{x}^{2}\right) \\
& y_{i}=\beta_{0}+\beta_{1} x_{i} \\
& X_{i}=x_{i}+e_{i}, e_{i} \sim \operatorname{ind} N\left(0, \sigma_{e}^{2}\right) \\
& Y_{i}=y_{i}+u_{i}, u_{i} \sim \operatorname{ind} N\left(0, \sigma_{u}^{2}\right)
\end{aligned}
$$

- However, there are 6 parameters that must be estimated in the Model
- Unidentifiable with the data available

Model 3 Problem

- Model 3: unidentifiable with the data available
- Bland and Altman still advocate their method...
- Problems with Bland-Altman:
- Does not allow bias to be estimated cleanly
- Does not give a pure estimated measure of agreement, but does give a upper bound of it.

$$
E\left[s_{x-y}^{2}\right]=\sigma_{x}^{2}\left(\beta_{1}-1\right)^{2}+\sigma_{e}^{2}+\sigma_{u}^{2}
$$

So, the s.e. $=2.0$ is a upper bound estimate of the s.d. of the differences

- Does not provide any information on relative precision.

Model 3 Problem: Normality?

- Reiersøl (1950)

If e_{i} and $u_{i} \sim$ i.i.d Normal, then
(β_{0}, β_{1}) non-identifiable iff
$\left(X_{i}, Y_{i}\right)$ are constants or bivariate Normal

- Model 3

$$
\begin{array}{|l|}
x_{i} \sim \operatorname{ind} N\left(\mu_{x}, \sigma_{x}^{2}\right) \\
y_{i}=\beta_{0}+\beta_{1} x_{i} \\
X_{i}=x_{i}+e_{i}, e_{i} \sim \operatorname{ind} N\left(0, \sigma_{e}^{2}\right) \\
Y_{i}=y_{i}+u_{i}, u_{i} \sim \operatorname{ind} N\left(0, \sigma_{u}^{2}\right)
\end{array}
$$

- Mostly of theoretical interest

Bland and Altman: A Question

- Is agreement really want we want to examine?
- If there is lack of agreement, do we know
- why?
- which device, if either, is better?
- No. For example:
- If the "gold standard" does not agree with the new device, it may be that the new device is very precise and the gold standard is highly variable.

Topics

- Problem, Example, Mathematical Model

Comparisons: Regression? Bland-Altman?

- More Models. Identifiability Problem, Bland-Altman
- A Richer Data Set and a Larger Model
- Comparison to Gage R\&R
- Mandel's Estimates
- Data Analysis
- Informal-Graphs, Background Assumptions
- Formal-Likelihood Methods

A Richer Data Set

- If possible, collect more than one observation for each subject.
- Note
- Bland and Altman advocate this on paper, but most of their examples use one-observation-persubject for each device (even if more than one observation was available)
- In any event, they still continue to use the notion of agreement

A Richer Data Set

$\begin{array}{lllllll}M D_{x} & x_{1} & x_{2} & x_{3} & x_{4} & \ldots & x_{N}\end{array}$
Long-term average right now
(Total $\int \begin{array}{llllll}X_{11} & X_{12} & X_{13} & X_{14} & \ldots & X_{1 N}\end{array}$
$\mathrm{MD}_{\mathrm{x}}\left\{\begin{array}{llllll}X_{21} & X_{22} & X_{23} & X_{24} & X_{2 N} & \text { Observed }\end{array}\right.$ data) ($\begin{array}{lllllll}X_{31} & X_{32} & X_{33} & X_{34} \ldots & X_{3 N}\end{array}$

$$
x_{i}, X_{j i}, i=1, \ldots, N, j=1, \ldots, J
$$

A Richer Data Set

- The additional information

$$
\begin{array}{llllll}
X_{11} & X_{12} & X_{13} & X_{14} & \ldots & X_{1 N} \\
\\
X_{21} & X_{22} & X_{23} & X_{24} \ldots & X_{2 N} & \\
X_{31} & X_{32} & X_{33} & X_{34} \ldots & X_{3 N} & \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
s_{e 1}^{2} & s_{e 2}^{2} & s_{e 3}^{2} & s_{e 4}^{2} & s_{e N}^{2} \Rightarrow s_{e}^{2} & \text { and } s_{u}^{2} \\
& & & & & \text { for } \mathrm{MD}_{\mathrm{y}}
\end{array}
$$

- Now: 7 summaries to estimate 6 parameters.

A Larger Model

- With 7 summaries to estimate 6 parameters, consider a larger, possibly more realistic, model

Model 4

- What if the two mea not quite measuring the same feature?

$$
\begin{aligned}
& x_{i} \sim \text { ind } N\left(\mu_{x}, \sigma_{x}^{2}\right) \\
& y_{i}=\beta_{0}+\beta_{1} x_{i}+\delta_{i}, \delta_{i} \sim \text { ind } N\left(0, \sigma_{\delta}^{2}\right) \\
& X_{j i}=x_{i}+e_{j i}, e_{j i} \sim \text { ind } N\left(0, \sigma_{e}^{2}\right) \\
& Y_{j i}=y_{i}+u_{j i}, u_{j i} \sim \text { ind } N\left(0, \sigma_{u}^{2}\right)
\end{aligned}
$$

- Model 4: structural, but not measurementerror, model.
- Still symmetric in (x, y), but "a problem model"

Aside: Path Diagrams

- Common in the sociological literature, e.g. Bollen (1989)
- Unobserved variables (x, y): latent variables
- Intelligence, socio-economic status
- Observed variables (X, Y): manifest variables.
- Scores on IQ test, annual income

Path Diagram: Model 4

Topics

- Problem, Example, Mathematical Model

Comparisons: Regression? Bland-Altman?

- More Models. Identifiability Problem, Bland-Altman
- A Richer Data Set and a Larger Model
- Comparison to Gage R\&R
- Mandel's Estimates
- Data Analysis
- Informal—Graphs, Background Assumptions
- Formal—Likelihood Methods

Comparison to Gage R\&R

- One device, several (say two) operators \rightarrow Two devices
- So, operators as devices...
- General operator differences (vs. specific-linear trenddifferences \& deviations from it)

- In usual case, assumes each operator's measurement error equal (vs. looking for different device precision)
- Often, small study (10 parts...), with poor estimates (vs. more data \& better estimates)

Mandel's Estimate and The Regression Problem

- Mandel (1984) considered Model 3 (possibly uncalibrated and different precision, but measuring same feature)
- He noted a rule for finding the best fitting line (estimating the relation between x and y, not X and Y)
- (A rediscovery? Lindley (1947))
- All meas't error in X:
\rightarrow Least Squares based on Regression of X on Y
- All meas't error in Y : \rightarrow Least Squares based on Regression of Y on X
- Equal meas't error in X \& Y: \rightarrow Least Squares based on 45° line
- Based on only one reading from each eye

- General Case: Least Squares based on k° line

Topics

- Problem, Example, Mathematical Model

Comparisons: Regression? Bland-Altman?

- More Models. Identifiability Problem, Bland-Altman
- A Richer Data Set and a Larger Model
- Comparison to Gage R\&R
- Mandel's Estimates
- Data Analysis
- Informal-Graphs, Background Assumptions
- Formal—Likelihood Methods

Data Analysis: Informal

- The largest model we want to fit is Model 4.
- But what if even this isn't right?
- Can the data tell us?
- Yes, up to a point. Examples of informal analysis:
- Does measurement variability increase as the values increase?
- Is there a trend in three consecutive readings?
- Is the bias, if any, linear?

Does Measurement Variability Increase as the Values Increase?

- Consider MD_{y} only here...

Plot of $s_{i, Y}$ vs. $\bar{Y}_{. i}$

$$
\begin{array}{|ll|}
\hline Y_{1 i} & \bar{Y}_{\cdot i} \\
Y_{2 i} \rightarrow & s_{i, Y} \\
Y_{3 i} & \\
\hline
\end{array}
$$

No evidence that $s_{i, Y}$ increases with $\bar{Y}_{\cdot i}$

Is there a Trend in Three Consecutive Readings?

Look at $Y_{3, i}-Y_{1, i}$
Y_{11}
$Y_{21} \rightarrow Y_{31}-Y_{11}$
Y_{31}

Is the Bias, if any, Linear?

- Solid lines: linear, quadratic fits to all the data ($\mathrm{N}=93$)
- Dashed lines: linear, quadratic fits without two largest X values
- \rightarrow Set aside two largest X values

Another Lack of Fit?

Note "Boundary" of
$\bar{X}_{\cdot i}$ at $\bar{X}_{\cdot i} \sim 10$

Set aside 7 lowest $\bar{X}_{. i}$ values

Both high and low
$\bar{X}_{. i}$ features need to be investigated...

Topics

- Problem, Example, Mathematical Model

Comparisons: Regression? Bland-Altman?

- More Models. Identifiability Problem, Bland-Altman
- A Richer Data Set and a Larger Model
- Comparison to Gage R\&R
- Mandel's Estimates
- Data Analysis
- Informal—Graphs, Background Assumptions
- Formal—Likelihood Methods

Data Analysis: Formal

- Comparison of Models in a hierarchy
- Start at largest and work down
- Find smallest model consistent with the data

Lin Bias and Diff Prec

Model 4

Model 3

Data Analysis: Formal

- Estimation via Maximum Likelihood
- Compare models via Likelihood Ratio Tests
- Software? Coded in Excel, for client's needs.
- Software via path diagrams available, e.g., Mx
- Available in well-known statistical software??

	$\hat{\boldsymbol{\theta}}$ for Model k				
$\boldsymbol{\theta}$ for Model	$k=4$	$k=3$	$k=2$	$k=2^{\prime}$	$k=1$
μ_{x}	14.805	14.806	14.806	14.834	14.824
β_{0}	1.248	0.504	1.653	0.000	0.000
β_{1}	0.918	0.968	0.891	1.000	1.000
σ_{x}^{2}	6.432	6.153	6.690	5.849	5.971
σ_{δ}^{2}	0.370	0.000	0.000	0.000	0.000
σ_{e}^{2}	3.119	3.398	2.115	3.422	2.139
σ_{u}^{2}	0.910	0.933	2.115	0.927	2.139
$\left(\mu_{y}=\beta_{0}+\beta_{1} \mu_{x}\right)$	14.842	14.842	14.842	14.834	14.824
$-2 L(\hat{\boldsymbol{\theta}})$	1062.70	1065.01	1124.45	1065.41	1128.97
$-2 L(\hat{\boldsymbol{\theta}})$ Difference, test of Model k versus $k-1$	2.31	59.44 vs 2 0.40 vs 2	4.52	63.56	
$3.84 / 5.99$ critical value, $\alpha=0.05$					
Rev: 0533000		JRC 2006 -			cass

Conclusions

$-\mathrm{MD}_{\mathrm{x}}$

- Some unusual behavior at lowest and highest readings
- Round-off error (seen in individual values).
$-\mathrm{MD}_{\mathrm{y}}$ vs MD_{x}
- Both MD's are measuring the same feature
- No evidence of linear bias
- MD_{y} is 1.9 x more precise than MD_{x}
- Bland-Altman w/o reps: \rightarrow lack of agreement?
- But MD_{y} test, MD_{x} reference \rightarrow wrong conclusions

Final Thoughts

- Structural models are natural models to use when comparing devices in the situation described in this talk
- Large literature, but not practiced much/well
- Common technique such as regression, and the "recommended" method of Bland-Altman, can be misleading and so should be avoided
- Software needs to be easily available
- Other modeling may be more appropriate to address other questions (such as operator consistency).

