The Comparison of Two Measurement Devices

2006 Joint Research Conference June 7–9, 2006

Joseph G. Voelkel(Bruce SiskowskiCQAS, COE, RITReichert, Inc.)

Topics

- Problem, Example, Mathematical Model
- Comparison: Regression? Bland-Altman?
- More Models, Identifiability Problem, Bland-Altman
- A Richer Data Set and a Larger Model
- Comparison to Gage R&R
- Mandel's Estimates
- Data Analysis
 - Informal—Graphs, Background Assumptions
 - Formal—Likelihood Methods

The Problem

Two measuring devices need to be compared

- Say, new vs old
- (Can extend to more than two...)
- No Standard
 - No standard exists for what is the right answer
 - A standard exists but is hard to come by \$\$
 - A standard exists but is not realistic

The Problem

Examples

- Blood pressure
- Cardiac Output
 - Fick method
 - Dyel dilution
 - Thermal dilution

"Gold Standard" also has measurement error

- Medical screening device that measures intraocular pressure of the human eye.
- Pressure acts on retina and optic nerve.
- Increased sustained pressures above 23mm Hg can lead to vision loss condition—glaucoma.
- If tonometer indicates possible risk, an M.D. of ophthalmology runs other detailed tests for a more accurate diagnosis.

Problem with tonometer calibration

- Difficult to put pressure sensors inside the human eye (!) to measure "exact" values
- Sensor insertion surgery exists but would change the eye anyway...
- Original gold standard is Goldman Applanation Tonometer (GAT) that touches the eye
- Example of a contact tonometer

 Reichert invented several non-contact air-puff versions since 1972 that

- Do not require eye anesthetic drops
- Do reduce operator variation via computerized automation.
- Reichert's goal is to employ better statistical tests to see if Reichert tonometers have less measurement repeatability variation than the GAT
- Most popular technique (Bland-Altman) only checks "agreement" and bias (more to follow)

- Two tonometers (different models). The reference device is called MD_x and the device under test is MD_y
- Example slightly simplified from original study. Only measurements of the left eye, in mm Hg. (Coded.)
- Study performed by selecting a sample of subjects. Each subject measured with MD_x and then with MD_y

JRC 2006 - 9

CQAS

Are the Two Devices Equivalent? And Other Questions...

What does it mean to say "equivalent"?
And if they are not equivalent, in what way are they not equivalent?

A (Tentative) Mathematical Model

 $MD_{x} \qquad \begin{array}{cccc} x_{1} & x_{2} & x_{3} & x_{4} & \dots & x_{N} \\ & & X_{1} & X_{2} & X_{3} & X_{4} & \dots & X_{N} \end{array} \qquad \begin{array}{c} \text{Long-term average} \\ \hline right now ("true?") \\ & & Observed \end{array}$

What does it mean to say "equivalent"?

Rev: 05/30/06

JRC 2006 - 12

A Mathematical Model

1. Where did these subjects come from??

 $x_2 \quad x_3 \quad x_4 \quad \dots \quad x_N$

 X_1

2. What do the x_i 's look like in the population? $x_i \sim \operatorname{ind} N(\mu_x, \sigma_x^2)$

r.s. size N from a pop'n

A Mathematical Model

 $x_i \sim \operatorname{ind} N(\mu_x, \sigma_x^2)$

3. What do we observe?

 $X_i = \mathbf{x}_i + \mathbf{e}_i, \quad \mathbf{e}_i \sim \text{ind } N(0, \sigma_e^2)$

 e_i is the x_i measurement error

A Mathematical Model

• The x distribution and, say, x_1

• The *x* distribution and, say, x_1 • The *X* distribution at x_1 . Also, X_1 $X_i = x_i + e_i, e_i \sim \text{ind } N(0, \sigma_e^2)$

A Mathematical Model, under Equivalency

- 4. What about the y_i 's?
- Should have some connection to the x_i 's... Model 1
- \bullet Equivalency =

 $Y_i = y_i + u_i, \quad u_i \sim \text{ind } N(0, \sigma_u^2)$

Model 1

30

10

Topics

 Problem, Example, Mathematical Model Comparison: Regression? Bland-Altman? More Models. Identifiability Problem, Bland-Altman A Richer Data Set and a Larger Model Comparison to Gage R&R Mandel's Estimates Data Analysis Informal—Graphs, Background Assumptions Formal—Likelihood Methods

Bland-Altman

Instead of Y vs X...
Plot Y-X vs average(Y & X)

An example of a difference-mean plot

Then look for *agreement*Very popular. One of the 10 most highly cited papers in statistics.

Bland-Altman

Use graph to check for

- Outliers
- Linear trends, bias

- More Spread at higher Aver(X&Y) values If so, try log transformation
- If all OK, summarize agreement by s.e.(X–Y)
- Here, if only use N=91, get s.e.=2.0
- Bland-Altman has become a standard method, accepted way to make comparisons

Topics

 Problem, Example, Mathematical Model Comparisons: Regression? Bland-Altman? More Models. Identifiability Problem, Bland-Altman A Richer Data Set and a Larger Model Comparison to Gage R&R Mandel's Estimates Data Analysis Informal—Graphs, Background Assumptions Formal—Likelihood Methods

Another Model...

Last model—possible linear bias but same measurement s.d.'s

This model—no linear bias but possible different measurement s.d.'s

$$x_{i} \sim \operatorname{ind} N\left(\mu_{x}, \sigma_{x}^{2}\right)$$

$$y_{i} = x_{i}$$

$$X_{i} = x_{i} + e_{i}, e_{i} \sim \operatorname{ind} N\left(0, \sigma_{e}^{2}\right)$$

$$Y_{i} = y_{i} + u_{i}, u_{i} \sim \operatorname{ind} N\left(0, \sigma_{u}^{2}\right)$$

And Another Model...

A model with possible linear bias and different measurement s.d.'s

$$x_{i} \sim \operatorname{ind} N\left(\mu_{x}, \sigma_{x}^{2}\right), \quad y_{i} = \beta_{0} + \beta_{1}x_{i}$$
$$X_{i} = x_{i} + e_{i}, \quad e_{i} \sim \operatorname{ind} N\left(0, \sigma_{e}^{2}\right)$$
$$Y_{i} = y_{i} + u_{i}, \quad u_{i} \sim \operatorname{ind} N\left(0, \sigma_{u}^{2}\right)$$

Very reasonable. MD_x and MD_y measuring the same feature, but possibly un-calibrated and possibly with different precision.
 Models 1-3: "structural," "measurement-error," models (Fuller (1987))

Literature ...

 Vast literature on this and related problems Lord (1960), Grubbs (1948), Pearson (1902); Thompson (1963), Jaech (...) Estimating var's in instruments w/o repeats • Wald (1940), Geary (1949), Tukey (1951) Use of add'l info: Instrumental variables Mandel (1959), Cochran (1968) Interlab comparison; survey examples. Lindley (1947), Neyman (1951), Kendall (1951), Wolfowitz (1952), Madansky (1959), Berkson (1950), Box (1961)

Information in the Data for Model 3?

• Under Model 3 assumptions, it is well known that the minimal sufficient statistic is 5 –dimensional: $x_i \sim \operatorname{ind} N(\mu_x, \sigma_x^2)$

$$\overline{X}, \overline{Y}, s_X^2, s_Y^2, r_{X,Y}$$
 (or $\widehat{Cov}(X, Y)$)

$$\mu_x, \sigma_x^2, \beta_0, \beta_1, \sigma_e^2, \sigma_u^2$$

 $x_{i} \sim \operatorname{ind} N(\mu_{x}, \sigma_{x}^{2})$ $y_{i} = \beta_{0} + \beta_{1}x_{i}$ $X_{i} = x_{i} + e_{i}, e_{i} \sim \operatorname{ind} N(0, \sigma_{e}^{2})$ $Y_{i} = y_{i} + u_{i}, u_{i} \sim \operatorname{ind} N(0, \sigma_{u}^{2})$

 However, there are 6 parameters that must be estimated in the Model

• Unidentifiable with the data available

Model 3 Problem

- Model 3: *unidentifiable* with the data available
 Bland and Altman still advocate their method...
 Problems with Bland-Altman:
 - Does not allow bias to be estimated cleanly
 - Does not give a pure estimated measure of agreement, but *does* give a upper bound of it.

$$E\left[s_{X-Y}^{2}\right] = \sigma_{x}^{2}\left(\beta_{1}-1\right)^{2} + \sigma_{e}^{2} + \sigma_{u}^{2}$$

So, the s.e.=2.0 is a upper bound estimate of the s.d. of the differences

• *Does not* provide *any* information on relative precision.

Model 3 Problem: Normality?

Model 3

Reiersøl (1950)

If e_i and $u_i \sim i.i.d$ Normal, then (β_0, β_1) non-identifiable iff (X_i, Y_i) are constants or bivariate Normal

$$x_{i} \sim \operatorname{ind} N(\mu_{x}, \sigma_{x}^{2})$$

$$y_{i} = \beta_{0} + \beta_{1}x_{i}$$

$$X_{i} = x_{i} + e_{i}, e_{i} \sim \operatorname{ind} N(0, \sigma_{e}^{2})$$

$$Y_{i} = y_{i} + u_{i}, u_{i} \sim \operatorname{ind} N(0, \sigma_{u}^{2})$$

 Mostly of theoretical interest

CQAS

Bland and Altman: A Question

- Is agreement really want we want to examine?
 If there is lock of agreement, do we know
- If there is lack of agreement, do we know
 - why?
 - which device, if either, is better?
- No. For example:

 If the "gold standard" does not agree with the new device, it may be that the new device is very precise and the gold standard is highly variable.

Topics

 Problem, Example, Mathematical Model Comparisons: Regression? Bland-Altman? More Models. Identifiability Problem, Bland-Altman A Richer Data Set and a Larger Model Comparison to Gage R&R Mandel's Estimates Data Analysis Informal—Graphs, Background Assumptions Formal—Likelihood Methods

A Richer Data Set

 If possible, collect more than one observation for each subject.

Note

- Bland and Altman advocate this on paper, but most of their examples use one-observation-persubject for each device (even if more than one observation was available)
- In any event, they still continue to use the notion of agreement

A Richer Data Set

 $MD_{x} = \begin{array}{cccc} x_{1} & x_{2} & x_{3} & x_{4} & \dots & x_{N} \end{array} \xrightarrow{\text{Long-term average}} \\ \textbf{(Total}_{X} \left\{ \begin{array}{cccc} X_{11} & X_{12} & X_{13} & X_{14} & \dots & X_{1N} \\ X_{21} & X_{22} & X_{23} & X_{24} & \dots & X_{2N} \end{array} \right. \xrightarrow{\text{Cong-term average}} \\ \textbf{(Total}_{X_{31}} & X_{32} & X_{33} & X_{34} & \dots & X_{3N} \end{array}$

 $x_i, X_{ii}, i = 1, ..., N, j = 1, ..., J$

A Richer Data Set

The additional information

 X_{11} X_{12} X_{13} X_{14} ... X_{1N} X_{21} X_{22} X_{23} X_{24} ... X_{2N} X_{31} X_{32} X_{33} X_{34} ... X_{3N} $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ and s_{μ}^2 s_{e1}^2 s_{e2}^2 s_{e3}^2 s_{e4}^2 $s_{eN}^2 \Rightarrow s_e^2$ for MD_v

Now: 7 summaries to estimate 6 parameters.

A Larger Model

 With 7 summaries to estimate 6 parameters, consider a larger, possibly Model 4 more realistic, model $|x_i \sim \operatorname{ind} N(\mu_x, \sigma_x^2)|$ What if the two measuring devices are $y_i = \beta_0 + \beta_1 x_i + \delta_i, \ \delta_i \sim \text{ind } N(0, \sigma_{\delta}^2)$ not quite measuring $X_{ii} = x_i + e_{ii}, e_{ii} \sim \text{ind } N(0, \sigma_e^2)$ the same feature? $|Y_{ji} = y_i + u_{ji}, u_{ji} \sim \text{ind } N(0, \sigma_u^2)$

 Model 4: structural, but not measurementerror, model.

Still symmetric in (x,y), but "a problem model"

JRC 2006 - 36

CQAS

Aside: Path Diagrams

- Common in the sociological literature, e.g. Bollen (1989)
- Unobserved variables (x, y): latent variables
 - Intelligence, socio-economic status
- Observed variables (X, Y): manifest variables.
 - Scores on IQ test, annual income

Topics

 Problem, Example, Mathematical Model Comparisons: Regression? Bland-Altman? More Models. Identifiability Problem, Bland-Altman A Richer Data Set and a Larger Model Comparison to Gage R&R Mandel's Estimates Data Analysis Informal—Graphs, Background Assumptions Formal—Likelihood Methods

Comparison to Gage R&R

- One device, several (say two) operators \rightarrow Two devices
- So, operators as devices...
- General operator differences (vs. specific—linear trend differences & deviations from it)

- In usual case, assumes each operator's measurement error equal (vs. looking for different device precision)
- Often, small study (10 parts...), with poor estimates (vs. more data & better estimates)

Mandel's Estimate and The Regression Problem

- Mandel (1984) considered Model 3 (possibly uncalibrated and different precision, but measuring same feature)
- He noted a rule for finding the best fitting line (estimating the relation between x and y, not X and Y)
- (A rediscovery? Lindley (1947))

 All meas't error in X:
 →Least Squares based ²⁰ on Regression of X on Y

- All meas't error in Y: X
 →Least Squares based ^A/₂
 on Regression of Y on X ¹⁵
- Equal meas't error in X
 & Y: → Least Squares
 based on 45° line

General Case: Least
 Squares based on k° line

Topics

 Problem, Example, Mathematical Model Comparisons: Regression? Bland-Altman? More Models. Identifiability Problem, Bland-Altman A Richer Data Set and a Larger Model Comparison to Gage R&R Mandel's Estimates Data Analysis Informal—Graphs, Background Assumptions Formal—Likelihood Methods

Data Analysis: Informal

The largest model we want to fit is Model 4.

- But what if even this isn't right?
- Can the data tell us?
- Yes, up to a point. Examples of informal analysis:
 - Does measurement variability increase as the values increase?
 - Is there a trend in three consecutive readings?
 - Is the bias, if any, linear?

Does Measurement Variability Increase as the Values Increase?

Consider MD_v only here...

literi esteri esteri esteri esteri esteri esteri di Vili

Is there a Trend in Three Consecutive Readings?

JRC 2006 - 47

CQAS

Is the Bias, if any, Linear?

- Solid lines: linear, quadratic fits to all the data (N=93)
 Dashed lines: linear, quadratic fits without two largest X values
- →Set aside two largest X values

Another Lack of Fit?

Topics

 Problem, Example, Mathematical Model Comparisons: Regression? Bland-Altman? More Models. Identifiability Problem, Bland-Altman A Richer Data Set and a Larger Model Comparison to Gage R&R Mandel's Estimates Data Analysis Informal—Graphs, Background Assumptions Formal—Likelihood Methods

Data Analysis: Formal

 Comparison of Models in a hierarchy Start at largest and work down Find smallest model consistent with the data

Data Analysis: Formal

- Estimation via Maximum Likelihood
- Compare models via Likelihood Ratio Tests
- Software? Coded in Excel, for client's needs.
 - Software via path diagrams available, e.g., Mx
 - Available in well-known statistical software??

Conclusions

\bullet MD_x

- Some unusual behavior at lowest and highest readings
- Round-off error (seen in individual values).

MD_v vs MD_x

- Both MD's are measuring the same feature
- No evidence of linear bias
- MD_v is 1.9x more precise than MD_x
- Bland-Altman w/o reps: \rightarrow lack of agreement?
 - But MD_v test, MD_x reference \rightarrow wrong conclusions

Final Thoughts

- Structural models are natural models to use when comparing devices in the situation described in this talk
- Large literature, but not practiced much/well
 - Common technique such as regression, and the "recommended" method of Bland-Altman, can be misleading and so should be avoided
 - Software needs to be easily available
- Other modeling may be more appropriate to address other questions (such as operator consistency).

