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Introduction

Determination of the most economic sampling interval for control of defective

items is a problem that is extremely relevant to manufacturing processes that

produce a continuous stream of products at a high speed.

� Frequent inspection requires more cost, time and manpower.

� Reduced frequency of inspection may lead to the risk of rejection of a large

number of items.

The problem of developing economically based online control methods for attributes has

been addressed in detail by Taguchi (1981,1984,1985), Taguchi et al. (1989) and

Nayebpour and Woodall (1993).

� The basic idea is to inspect a single item after every m units of production.

� A process adjustment is made as soon as a defective item is found.

� The value of m is to be determined to minimize the expected cost per item.
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Different Cases
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Different Cases
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Optimal Sampling Interval

� Consider a geometric process failure mechanism (PFM) with a parameter p.

(The number of items produced before a process shift occurs, is Geo�p�)

� The expected loss per item (E�L�) is a function of p in Case I and �p�π� in

Case II.

� The task of obtaining the optimal sampling interval thus consists of the

following two stages :

(i) Estimate the parameters associated with the PFM from historical data.

(ii) Plug in these estimates into the expression for E�L� and minimize it with

respect to m.

The solution to the optimization problem is therefore strongly dependent on the

estimate of the process parameters p and π.
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Chicken First or Egg First

� In Case II, the estimator of p involves π, and incorrect estimation of π may

lead to an erroneous estimate of p.

� Nayebpour and Woodall (1993) suggest obtaining an estimate of π using

historical data on retrospective inspections.

� However, many companies may consider performing retrospective

inspection uneconomic based on their perception about the value of π.

Indeed, Nayebpour and Woodall (1993) recommend that retrospective

inspection should be performed if

CI � πCD�

We need retrospective inspection data to estimate π and, on the other hand,

an estimate of π to decide whether to perform retrospective inspection or

not.
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Benefits of the Proposed Methods

� If one can devise a reasonable estimation method from the data on cycle

lengths, it would result in the following benefits:

– It would prevent economic penalties resulting in incorrect estimation of

the optimum inspection interval m.

– It would assist the managers to take a better decision regarding whether

to implement retrospective inspection or not.
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Estimation of p and π in Case II

� Two methods have been proposed

– Estimation using EM algorithm

This is easy to implement, but can not be generalized to Case III.

– The Bayesian approach

It is very likely that in most of the cases process engineers will have

some vague idea about π, which may not be good enough to check the

condition CI � πCD, but may provide the analyst with a reasonable prior

distribution for π.
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The Statistical Model for Case II

For the ith production cycle, i � 1�2� � � �, let

(i) Ui denote the number of products manufactured till the appearance of the

first defect.

(ii) Xi � �Ui�m��1 denote the number of inspections from the beginning of the

cycle to the first one immediately after appearance of the first defect.

(iii) Yi denote the number of additional inspections necessary to detect the

assignable cause after Xi.

(iv) l denote the number of units produced from the time a defective item is

sampled until the time the production process is stopped for adjustment.

(v) Si � Xi �Yi ��l�m� denote the number of products inspected in the cycle.

(vi) Ti � m�Xi �Yi�� l denote the total length of a cycle, or in other words, the

number of products manufactured in a cycle.

(vii) Ci denote the total cost incurred in the cycle.
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The Statistical Model for Case II

� We assume that Ui and Yi, (i � 1�2� � � �) are geometric random variables with

parameters p and π so that

P�Ui � u� � pqu�1� u � 1�2� � � � where q � 1� p�

P�Yi � y� � π�1�π�y� y � 0�1�2� � � �

� It readily follows that the pmf of Xi is given by

P�Xi � x� � P

�
�x�1�m �Ui � mx

�

� q�x�1�m�1�qm�� x � 1�2� � � �
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An Illustrative Example

� Suppose the current sampling interval m is 10.

� The 17th item is the first defective item, after which the process starts

producing 100π% defectives.

� The 20th item is non-defective; hence, the second inspection is unable to

detect the assignable cause.

� The defect appears in the 30th item and is detected.

� However, the process can be stopped after 4 more items have been

manufactured, i.e., only after the 34th item. Thus, in this cycle,

U � 17�X � 2�Y � 1� l � 4�T � 34�S � X �Y � 3.
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X X X

First sampled defective

Process stopped
(Cycle ends)

Cycle begins

X

First defective

10 17 20 301 5 15 25 34

: Non-defective item
X   : Defective item

: Inspected item
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Some Comments

Note that Case I and Case III can also be explained with the above process

model.

� In Case I, π � 1 and hence Y � 0�S � X .

� In Case III, we have two possibilities �

– either the minor assignable cause (after which the process starts

producing 100π% defectives) or

– the major assignable cause (after which the process starts producing

100% defectives) appears first.

Thus, in this case U � min�U1�U2� where U1 � Geometric�p1� and

U2 � Geometric�p2�. Consequently, U � Geometric�p� where

p � p1 � p2� p1 p2.

13



Some Comments

� The sequence �T1�C1���T2�C2�� � � � represents a renewal reward process

(Ross, 1996). Thus, by the renewal reward theorem, the long-term expected

loss per product E�L� converges to E�C�

E�T� , where E�Ci� � E�C� and

E�Ti� � E�T � for i� 1.

� Under the geometric PFM with a given p, explicit expressions for E�C� and

E�T � can be computed (Nayebpour and Woodall, 1993) and E�L� can be

expressed as a convex function of m for given p and π.

� The optimum sampling interval is to obtained as

m� � argminE�L�m� p̂� π̂��
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Estimation of p and π in Case II

� Suppose, we observe N production cycles and have the data on on the

number of products inspected in each cycle s1�s2� � � � �sN .

� The objective is to estimate π and p from this dataset.

PROPOSITION 1: The log-likelihood function of p and π is given by

logL�p�π;s1�s2� � � � �sN�

� N logπ�N log�1�qm��N log �1�π�qm��

N

∑
i�1

log ��1�π�ri �qmri ��

where r � s� �l�m�.

� Clearly, the log-likelihood does not yield a straightforward expression for

the MLE.

� Thus, one has to use numerical methods to solve the optimization problem.

However, owing to the complex nature of the nonlinear function, its direct

optimization is not very easy.
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Estimation of p and π in Case II

� Note that, in this problem, the observed data s1�s2� � � � �sN are realizations of

the random variable S � X �Y .

� If it was possible to observe X and Y separately, it would have been possible

to estimate p and π without much difficulty.

� Thus, in a sense, the data we observe here is incomplete. EM algorithm

(Dempster et al. 1977) is a popular way of parameter estimation for such

kind of problems and it is possible to simplify the optimization considerably

using the EM algorithm.
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Estimation using EM algorithm

� Suppose, instead of s1�s2� � � � �sN , we had observed the complete data

�x1�y1�� � � � ��xN �yN�. Then, after observing the complete data, the

log-likelihood function would have been

logL�x�y;θ� � N

�

logπ� log�1�qm��m logq
�

�m logq
N

∑
i�1

xi � log�1�π�

N

∑
i�1

yi

� PROPOSITION 2 : Let GX �θ� and GY �θ� denote respectively the

conditional expectations of X and Y , given S � s. Then,

(i) GX �θ� � 1
1�ψ �

rψr

ψ�1�ψr� , where ψ � qm

1�π and r � s� �l�m�.

(ii) GY �θ� � φ�1�φr�1�

�1�φ��1�φr� �
�r�1�φr

1�φr , where φ � 1
ψ and r � s� �l�m�.
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Estimation using EM algorithm

(I) (E-step) Compute Q�θ�θ�k�1�� � Eθ�k�1�
�

logL�x�y�θ�s�
�

�N

�

logπ� log�1�qm��m logq

�
�m logq

N

∑
i�1

GXi

�

θ�k�1�
�

� log�1�π�

N

∑
i�1

GYi

�

θ�k�1�
�

(II) (M-step) Find θ�k� such that θ�k� � argmaxθ Q

�
θ�θ�k�1�

�
.

Equating ∂Q�θ�θ�k�1��

∂π to zero, we obtain

π�k� �

N

N �∑N
i�1 GYi

�

θ�k�1�
�

Also,

p�k� � 1�
�

�1�

mc

T �
�

l � mc�1�π�k��

π�k�

�
�

�

1�mc
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The Bayesian approach: Prior for π

� Suppose, based on their past experience and/or pilot study, the process

engineers are able to specify a reasonable range for π as �πL�πU �.

� Recalling that π must satisfy π � πbound , we would assign a negligibly small

mass of the prior distribution below πbound .

� Therefore, we can elicit a Beta�απ�βπ� prior for π where the

hyperparameters can be obtained by solving

Γ�απ �βπ�

Γ�απ�Γ�βπ�
� πbound

0
παπ�1�1�π�βπ�1dπ � ε

Γ�απ �βπ�

Γ�απ�Γ�βπ�
� πU

max�πbound �πL�

παπ�1�1�π�βπ�1dπ � 1� γπ

� It is clear that the first implies that there is a negligibly small probability ε
that π will be less than πbound , and the second equation ensures that the

probability of π lying beyond the stated interval equals a pre-assigned value

γπ. (1� γπ can be interpreted as the degree of belief.)
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The Bayesian approach: Prior for p

� Even when there is no available prior information on p, we can elicit a prior

distribution for p based on the knowledge of π.

� Let pL and pU be the lower and upper limits of p obtained by substituting

πU and max�πbound �πL� respectively in the MLE estimate of p.

� The hyperparameters αp�βp of a suitable Beta prior distribution for p may

be obtained by solving

Γ�αp �βp�

Γ�αp�Γ�βp�
� �pL�pU ��2

0
pαp�1�1� p�βp�1dp �

1
2

Γ�αp �βp�

Γ�αp�Γ�βp�
� pU

pL

pαp�1�1� p�βp�1dp � 1� γp

� The first equation implies that the median of the distribution is taken at the

mid point of the interval �pL� pU �. Interpretation of the second equation is

clearly the same as before.

20



A Simulated Example: Comparison of the Methods

Consider a process where we have, p � 0�000339, as in the Case I example of

Nayebpour and Woodall (1993). Let mc � 500, π � 0�10 and l � 0. We simulate

200 production cycles from the above process, thereby generating data of the

form s1�s2� � � � �s200.

Regarding the available prior information, we consider the following two

situations:

� The process engineer, from his experience, states “When the process goes

out of control, it produces at most 15% defectives on an average. I have no

idea about p”.

� The process engineer states,“As per my experience, the appropriate range

for π is 12�5%. p usually doesn’t exceed 0.0005.”
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A Simulated Example: Comparison of the Methods

Estimates of p and π are obtained using the EM algorithm and the Bayesian

method. Altogether we have the following seven cases.

1. EM algorithm based estimation.

2. Bayesian estimation using uniform prior and MCMC.

3. Bayesian estimation using uniform prior with posterior mode as the

estimate.

4. Bayesian estimation using a tight Beta prior (γπ � γp � 0�05) and MCMC.

5. Bayesian estimation using a tight Beta prior (γπ � γp � 0�05) with posterior

mode as the estimate.

6. Bayesian estimation using a flatter Beta prior (γπ � γp � 0�25) and MCMC.

7. Bayesian estimation using a flatter Beta prior (γπ � γp � 0�25) with

posterior mode as the estimate.
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A Simulated Example: Comparison of the Methods

� The prior distributions for cases 2�7 corresponding to the two situations are

shown in Table 1.

� Note that the hyperparameters for the beta priors are derived taking

ε � 0�001.

Table 1: Prior distributions for p and π for the Bayesian methods

Methods Situation 1 Situation 2

Prior for p Prior for π Prior for p Prior for π

2 and 3 U �0�0002�0�0009� U �0�07�0�15� U �0�0002�0�0005� U �0�07�0�17�

4 and 5 Beta�9�16355� Beta�25�196� Beta�20�56500� Beta�20�144�

6 and 7 Beta�3�5000� Beta�19�125� Beta�6�75�18550� Beta�13�76�

� The simulation is repeated 100 times and the results are summarized next.
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Summary of Simulation Output in Case II

(True values: p� 0�000339�π� �10)

Available info Method Estimate of p Estimate of π
mean� p̂� sd� p̂� mean�π̂� sd�π̂�

EM algorithm 0.000356 0.000109 0.1043 0.0170

MCMC 0.000367 0.000097 0.1008 0.0119

0� π� 0�15
uniform

MAP 0.000592 0.000029 0.0839 0.0049

No info on p MCMC 0.000374 0.000057 0.0981 0.0073
Bayesian Tight

MAP 0.000589 0.000045 0.0819 0.0055
Beta

MCMC 0.000306 0.000067 0.1127 0.0097
Flat

MAP 0.000591 0.000049 0.0826 0.0051

EM algorithm 0.000297 0.000097 0.1228 0.0307

MCMC 0.000322 0.000050 0.1076 0.0127

0�07� π� 0�17
uniform

MAP 0.000235 0.000034 0.1372 0.0214

0 � p� 0�0005 MCMC 0.000269 0.000033 0.1228 0.0085
Bayesian Tight

MAP 0.000248 0.000007 0.1219 0.0052
Beta

MCMC 0.000313 0.000022 0.1076 0.0063
Flat

MAP 0.000231 0.000027 0.1388 0.0182
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Discussions on Simulation Output in Case II

1. The MAP estimates are seen to be poor in both situations, irrespective of the prior

distributions. There are multiple modes in the posterior distribution. Convergence of

the optimization algorithm is seen to depend on the initial choices of the parameters.

2. The EM algorithm based estimates are good in situation 1, but the algorithm

converges to a local maxima in situation 2. As explained by Wu (1983), if the log

likelihood has several (local or global) maxima and stationary points, convergence of

the EM algorithm depends on the choice of starting point.

3. The Bayes’ estimates obtained using MCMC perform better and are more more

robust to the varying levels of available preliminary information on the parameters.

The performance is not very sensitive to the choice of prior except in the case of the

tight Beta prior in situation 2. This is possibly a consequence of placing almost the

entire mass of the prior in the stated range with mean at the center.

4. The variance of p̂ corresponding to almost each method is generally seen to be less

in situation 2 as compared to situation 1, which shows that, as expected, with better

and more accurate prior information, one can obtain more efficient estimates.
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Estimation of parameters in Case III

� Case III, discussed by Nandi and Sreehari (1997), deals with a scenario

where there are two types of assignable causes, termed minor and major,

and their appearances follow geometric patterns with parameters p1 and p2.

� Occurrence of a major assignable cause leads to a situation like Case I,

where all subsequent items produced are defective.

� A minor assignable cause leads to a situation like Case II, i.e., the process

starts producing 100π% defective products following the occurrence of such

a cause.

� Although Nandi and Sreehari (1997) derived expressions for the expected

loss, they completely ignored the estimation of p1� p2 and π.
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The Bayesian estimation of p1� p2 and π
Note that, for this case we can use exactly the same notations as in Case II if we
define p � p1 � p2� p1 p2, i.e., q � q1q2, where qi � 1� pi for i � 1�2.

To develop the Bayesian algorithm we need the following result:

PROPOSITION 3 : The probability mass function of S is given by

P�S � s� � �1�qm�
�

α�1�π��πqm
2 �1�qm

2 �∆

�
��1�π�qm

2 �

r�1�qm�r�1�

�1�π�qm
2 �qm

�

� qm�r�1��1�∆α�1�π�
��
� s � 1�2� � �

where

r � s� �l�m�� p � p1 � p2� p1 p2� and ∆ � q2�

1�q1

1�qm
1

�

qm
2 �qm

1

q2�q1

�

We assume that pi � Beta�αi�βi�� i � 1�2 and π � Beta�α3�β3�. Then
Proposition 3 leads to the following corollary.
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The Bayesian estimation of p1� p2 and π

logg�p1� p2�π�s1� � � � �sN� ∝ N log�1�qm�

�

N

∑
i�1

log

�
	α�1�π��πqm

2 �1�qm
2 �∆

��1�π�qm
2 �

ri�1�qm�ri�1�

�1�π�qm
2 �qm �qm�ri�1��1�∆α�1�π��



�

�

2

∑
j�1

�α j �1� log pj ��α3�1� logπ�

2

∑
j�1

�β j �1� logqj ��β3�1� log�1�π�

� Assuming that we have some lower and upper bounds for each of the three

parameters, the hyperparameters αi�βi, i � 1�2�3 can be obtained in the same way as

discussed before.

� If the engineers are more or less certain about the limits and are unable to say

anything more about the prior distributions, uniform priors could be a possible

choice again.

� Considering the complication involved in finding the posterior modes, we only use

MCMC methods to simulate the posterior density of each parameter.
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Simulation results

We consider the same numerical example as the one used by Nandi and Sreehari (1997)

where π � 0�10, p1 � 0�001 and p2 � 0�002. As in Case II, we generate 200 cycles in

each simulation of the process.

The following two levels of prior information are considered:

1. “Strong” (Reasonably accurate information) :

0�001 � p1 � 0�003�0 � p2 � 0�002�0�07 � π � 0�13

2. “Weak” (Moderately accurate information) :

0 � p1 � 0�005�0 � p2 � 0�003�0 � π � 0�25

In order to study the sensitivity of the method with respect to the choice of the prior

distributions, we consider the following three priors:

(i) Beta priors tightly distributed in the stated intervals with γp1 � γp2 � γπ � 0�05.

(ii) Flatter Beta priors with γp1 � γp2 � γπ � 0�25.

(iii) Uniform priors in the stated intervals.
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Case III: Summary of Simulation Results

100 simulations were carried out for each of the 6 cases. Each estimate is the median of

its simulated posterior distribution (10,000 MCMC iterations with burn-in of 1000).

Level of Prior Distribution π p1 p2

information

STRONG High belief Beta �α1 � 22�β1 � 9980 Mean 0.10071 0.00209 0.00085

α2 � 4�β2 � 4000, α3 � 40�β3 � 450� sd 0.00430 0.00023 0.00014

0�001� p1 � 0�003 Low belief Beta �α1 � 5�β1 � 2500 Mean 0.09643 0.00209 0.00091

0� p2 � 0�002� α2 � �55�β2 � 400, α3 � 12�β3 � 110� sd 0.01186 0.00035 0.00024

0�07� π� 0�13� Mean 0.09783 0.00205 0.00092
Uniform

sd 0.00751 0.00033 0.00022

WEAK High belief Beta �α1 � 3�β1 � 1375 Mean 0.09843 0.00217 0.00093

α2 � 2�β2 � 1500, α3 � 3�β3 � 21� sd 0.02809 0.00050 0.00020

0� p1 � 0�005 Low belief Beta �α1 � 1�β1 � 300 Mean 0.09992 0.00242 0.00086

0� p2 � 0�003� α2 � �75�β2 � 375, α3 � 1�β3 � 5� sd 0.04610 0.00072 0.00033

0� π� 0�25� Mean 0.09397 0.00246 0.00094
Uniform

sd 0.04086 0.00081 0.00026
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Comments on Simulation Results

1. The method works satisfactorily, even when the prior information is not

quite accurate.

2. However, as expected, the accuracy of prior information increases the

efficiency of the parameter estimates. This is supported by the fact that with

“strong” prior information the variances of the estimators are much less that

with “weak” information.

3. The method does not seem to be very much sensitive to the choice of the

nature of prior distribution, as also seen in Case II. If the prior information

on π is of the form π0�δ, then it might be easy to elicit a Beta prior with

mean close to π0. On the other hand, if it is simply of the form of an interval

πL�πU , it would be more pragmatic to consider a uniform prior.
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Summary and Conclusions

� Noting that the estimation problem is trivial for Case I, we highlight the

problems associated with the estimation of the process parameters in Case II

(p and π) and Case III (p1� p2 and π).

� We propose two different estimation procedures to resolve the

aforementioned problems. One is based on the Bayesian approach and the

other based on the EM algorithm.

� We propose some concrete guidelines for eliciting a prior distribution from

the available information.

� One interesting area of future research in this area is to develop a generic

framework with k types of assignable causes that would have Case I, Case II

and Case III as special cases. This is encountered in several industrial

situations.
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Thank you
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