Robust Parameter Design with Measurement Systems

C.F.Jeff Wu Georgia Institute of Technology

(joint with Arden Miller, University of Auckland and Tirthankar Dasgupta,Georgia Tech)

A schematic measurement system

The typical problem (without observable noise *N*)

	S	ignal	facto	or (<i>M</i>)	leve	IS
Control factors	<i>M</i> ₁	<i>M</i> ₂	<i>M</i> ₃	M_4		M _k
< ∜(X)	Y ₁₁	Y ₁₂	Y ₁₃	Y ₁₄		Υ _{1k}
	Y ₂₁	Y ₂₂	Y ₂₃	Y ₂₄		Y _{2k}

- $Y = g(X, Z, M) = \alpha(X) + \beta(X)M + \sigma(X)\varepsilon$, where $\varepsilon \sim N(0, 1)$.
- $\hat{M} = (Y_{obs} \alpha(X)) / \beta(X).$
- Obtain X such that $var(\hat{M}) = \sigma^2(X)/\beta^2(X)$ is minimized.
- Estimated performance measure (to be maximized) is β²(X)/σ²(X) (Rigorous proof by Miller and Wu 1996).

Example : Taguchi's drive shaft experiment

- The measurement system : compensates imbalance (Y) by attaching balance weights (M).
- Purpose of experiment : Achieving system robustness.
- Y: Measured residual imbalance.
- *M* : Balance weight attached to drive shaft.
- Noise factor : Variation in imbalance levels of different shafts.
- Control factors : Factors associated with the imbalance tester.

Drive shaft experiment

CONTROL ARRAY	N1	: Go	od Sł	naft	N2	: Go	od Sł	naft	N3	3 : Ba	ld Sh	aft
	0	10	20	30	0	10	20	30	0	10	20	30
	-4	6	18	27	-4	6	15	25	-20	-10	2	14
∮(X)												
	50 — 40 -						•					
	30 -					•	•					
	20 -				•							
	10 -											
			10		20		20	10				
	·10 Ψ		v		20	3		40	,			
	20											
	-30											

A simple model

CONTROL ARRAY	N1	: Go	od Sł	naft	N2	: Go	od Sł	naft	N3: Bad Shaft			
	M ₁	M ₂	M ₃	M ₄	M ₁	M ₂	M ₃	M ₄	M ₁	M ₂	M ₃	M ₄
	Y ₁₁	Υ ₁₂	Υ ₁₃	Y ₁₄	Y ₂₁	Y ₂₂	Y ₂₃	Y ₂₄	Y ₃₁	Y ₃₂	Y ₃₃	Y ₃₄
√ (X)												

$$Y_{jk} = \alpha_k + \beta M_j + \varepsilon_{jk},$$

$$j = 1, 2, 3, 4, \ k = 1, 2, 3$$

$$\varepsilon_{jk} \sim N(0, \sigma^2).$$

Taguchi's analysis

CONTROL ARRAY	N1	: Go	od Sł	naft	N2	: Go	od Sł	naft	N	3: Ba	aft	SN	
	M ₁	$M_1 \mid M_2 \mid M_3 \mid M_4$				M_2	M ₃	M_4	M ₁	M_2	M ₃	M_4	ratio
<₽(X)	Y ₁₁	Y ₁₂	Υ ₁₃	Y ₁₄	Y ₂₁	Y ₂₂	Y ₂₃	Y ₂₄	Y ₃₁	Y ₃₂	Y ₃₃	Y ₃₄	η

- Dynamic SN ratio $\eta = \frac{\hat{\beta}^2}{s^2}$,
- $s^2 = \hat{\sigma}^2 = \sum_j \sum_k (Y_{jk} \hat{\alpha}_k \hat{\beta}M_j),$
- $\hat{\alpha}_k$ and $\hat{\beta}$ are least squares estimates.
- Find out which control factors affect η significantly.
- Choose the setting that maximizes η .
- SN Ratio, a special case of performance measure modeling.

Proposed Approach : Summary

- Cross Array Design.
- Two analysis approaches (Miller and Wu, 1996)
 - Response function modeling (RFM)
 - Separate modeling of β and $\log s^2$
 - Performance measure modeling (PMM)
 - Direct modeling of the performance measure
- Using split-plot techniques in response function modeling.
- Maximum likelihood method for estimation of variance components.
- Optimize system by maximizing performance measure.

Design and model for RFM

		Signal facto	or leve	el
Row No.	COMBINED ARRAY (CONTROL & NOISE)	j -th (M_j)		
<i>i</i> -th	$Z = \operatorname{P}(X) \operatorname{P}(N)$	Y _{ij}		

$$Y_{ij} = \alpha_i + \beta_i M_j + \sigma_i \varepsilon_{ij},$$

$$\beta_i = \mathbf{z}'_i \Omega_\beta + \sigma_\beta \tau_i.$$

$$\ln(\sigma_i^2) = \mathbf{z}'_i \Omega_\sigma + \sigma_\sigma \zeta_i.$$

 $\varepsilon_{ij}, \tau_i, \zeta_i$: independent N(0,1) variables.

Estimated response models

$$\begin{split} \hat{Y}_{ij} &= \hat{\alpha}_i + \hat{\beta}_i M_j, \\ \hat{\beta}_i &= \beta_i + \varepsilon_i \sqrt{(\sigma_i^2 / S_{mm})} \\ &= \mathbf{z}_i' \Omega_\beta + \xi_i \sqrt{\sigma_\beta^2 + \sigma_i^2 / S_{mm}}. \\ \ln(s_i^2) &= \ln(\sigma_i^2) + \varepsilon_i \sqrt{(2/\nu)} \\ &= \mathbf{z}_i' \Omega_\sigma + \xi_i \sqrt{\sigma_\sigma^2 + 2/\nu}. \end{split}$$

 ξ_i , ε_i : independent N(0,1) variables.

RECOMMENDED APPROACH FOR RFM

- Compute $\hat{\beta}$ and s^2 corresponding to each row.
- Use half-normal plots to detect significant effects for β and $ln(\sigma^2).$
- Fit separate models for $\hat{\beta}$ and $\ln(s^2)$ in terms of significant control and noise factors.
- Use maximum likelihood method to estimate σ_{β}^2 and σ_{σ}^2 .
- An appropriate performance measure is $\hat{\beta}^2/(s^2 + \hat{\sigma}_{\beta}^2)$.
- If $\sigma_{\beta} \approx 0$, one can use $\ln(\hat{\beta}^2/s^2)$.
- Determine control factor settings that maximize the performance measure.

Control factors for the drive shaft experiment

FACTORS		Leve	els	
	1	2	3	4
A : Testing machine	A1 : New	A2 : Old	-	-
B : Master Rotor	B1 : # 1	B2 : # 2	B3 : # 3	B4 : #4
C : Rotations at handling time	C1 : Current	C2 : New	-	-
D : Rotations at measurement	D1 : Current	D2 : New	-	-
E : Signal Sensitivity	E1 : 10	E2 : 20	E3 : 30	E4 : 40
F : Sequence of correction of imbalance	F1 : Current	F2 : Reverse	F3 : New # 1	F4 : New # 2
G : Imbalance correction location	G1 : Current	G2 : New	-	-

Control Array

RUN	A	В	С	D	E	F	G
1	1	1	1	1	1	1	1
2	1	2	1	2	2	2	1
3	1	3	2	1	3	3	1
4	1	4	2	2	4	4	1
5	1	2	1	1	3	4	2
6	1	1	1	2	4	3	2
7	1	4	2	1	1	2	2
8	1	3	2	2	2	1	2
9	2	3	1	1	4	2	1
10	2	4	1	2	3	1	1
11	2	1	2	1	2	4	1
12	2	2	2	2	1	3	1
13	2	4	1	1	2	3	2
14	2	3	1	2	1	4	2
15	2	2	2	1	4	1	2
16	2	1	2	2	3	2	2

Experimental data (Flange side)

		D	S1		DS2				D	S3		
Run	M_1	M_2	M_3	M_4	M_1	M_2	M_3	M_4	M_1	M_2	M_3	M_4
1	-4	6	18	27	-4	6	15	25	-20	-10	2	14
2	-7	10	23	42	-3	15	32	46	-34	-20	4	16
3	-4	9	22	34	-7	6	18	30	-26	-15	0	12
4	-2	10	22	36	-4	8	22	34	-30	-18	-7	10
5	-6	6	16	28	-5	6	16	27	-21	-12	3	13
6	-7	13	32	50	-7	14	31	48	- 4 5	-27	-8	13
7	-13	10	30	52	-8	10	30	50	-37	-18	7	26
8	-19	(8)	27	48	-14	7	29	52	-42	-25	-2	22
9	-10	4	.16	29	-8	6	16	26	-29	-20	-14	[-14]
10	-14	11	32	51	-18	4	25	46	-44	-26	-11	16
11	-3	2	10	16	-4	2	(17)	13	-13	-8	-5	7
12	-5	5	16	25	-7	3	12	22	-22	-14	-8	12
13	-4	6	18	30	-8	2	16	28	-23	-15	-10	18
14	-6	16	38	62	-16	6	32	55	-44	-25	-6	21
15	-4	2	7	14	-4	2	6	12	-10	-6	-3	7
16	-5	6	16	30	-7	4	16	27	-25	-14	-6	14

Preliminary Analysis : Effect of machine

MACHINE	N	1 : Go	od Sha	aft	N	2 : Go	od Sha	aft	١	N3 : Ba	d Shat	ft
(FACTOR A)	M=0	M=10	M=20	M=30	M=0	M=10	M=20	M=30	M=0	M=10	M=20	M=30
1(NEW)												
1(NEW)					e Fit V	V - â	âм					
1(NEW)					• FR I	-u+	p <i>ivi</i> .					
1(NEW)					• Con	npute res	iduals âM					
1(NEW)					<i>e</i> =	$I - \alpha -$	рм.					
1(NEW)					• Plot	residual	s for eac	h nation				
1(NEW)					mac	inine/sna		nation.				
1(NEW)												
2 (OLD)												
2 (OLD)							7					
2 (OLD)												
2 (OLD)												
2 (OLD)												
2 (OLD)												
2 (OLD)												
2 (OLD)												

Preliminary analysis (contd.)

- Large residuals for drive shaft 3.
- Variance component depends on machine x shaft interaction.
- Missed in Taguchi's analysis.
- Such information may be practically useful, (e.g., reducing measurement error by utilizing machine x appraiser interaction.)

RFM Analysis

			Cont	rol fa	ctors			Noise	S	Signal	facto	r		
RUN	Α	В	С	D	Е	F	G	(Shaft)	M ₁	M ₂	M ₃	M_4	β	S ²
1	1	1	1	1	1	1	1	N1						
2	1	1	1	1	1	1	1	N2						
3	1	1	1	1	1	1	1	N3						
48	2	1	2	2	3	2	2	N3						

- Noise factor split into two orthogonal contrasts N and n.
 - n contrasts N1 with N2; N contrasts N3 with N1 and N2.
- Four-level qualitative factors B and F split into three orthogonal contrasts each.
- Four-level quantitative factor E split into three orthogonal contrasts linear, quadratic, cubic.
- Two groups of estimated effects (split-plot analysis, Box and Jones 1992)
 - Those involving N and n.
 - Those not involving N and n.

Half-normal plots for β

• No effects involving n, N significant ($\sigma_{\beta}^2 \oplus 0$).

• D and B_1 significant.

Half-normal plots for $ln(\sigma^2)$

- *N,NA* significant.
- As expected, residual variance is affected by shaft x machine interaction.

Correlation among parameter estimates

- No trend in the first plot; trend in second plot.
- A and E_c stand apart warrant further consideration.
- *E_c* not considered difficult to justify inclusion of cubic effect in model without linear and quadratic effects.

Fitted models

$$\hat{\log \beta^2} = 0.54 [+0.29X_A] - 0.44X_{B1} - 0.43X_D$$
$$[-0.04X_N - 0.02X_NX_A],$$
$$\hat{\log \sigma^2} = 0.59 [-0.42X_A - 0.19X_{B1} - 0.29X_D]$$
$$-1.27X_N + 0.41X_NX_A.$$

- D, B_1 significant for β .
- *N*, *NA* significant for $\ln(\sigma^2)$.
- *A* is included on the basis of the correlation plot.
- The same set of effects are included in both models (effects in square brackets are those not found significant for that parameter).

Optimal factor settings

- Maximize $P\hat{M} = \hat{\log}\beta^2 \hat{\log}\sigma^2$ = $-0.05 + 0.71X_A - 0.25x_{B1} - 0.14X_D - 1.23X_N - 0.39X_NX_A$.
- The above is maximized if $X_A = 1, X_{B1} = -1, X_D = -1.$
- Thus the optimal combination is A = A₁, B = B₃ or B₄, D = D₂.

Note : For testing a *good* shaft (N = 1) either machine is OK. However, for testing a *bad* shaft (N = -1), the new machine (A = 1) is much better.

PMM (SN Ratio) with drive shaft data

	D	S 1	$\mathbf{D}_{\mathbf{S}}^{\mathbf{S}}$	S2	D	S3						-	1000	217			A
Run	β	s^2	β	s^2	β	s^2	$\hat{\mathrm{PM}}_i$			Q							
1	1.05	0.75	0.96	0.10	1.14	0.60	1.13			o.	1						
2	1.60	3.00	1.64	2.10	1.74	12.60	-0.45								I	Ec	
3	1.27	0.15	1.23	0.15	1.29	1.35	1.63			4.	-						
4	1.26	0.60	1.28	0.40	1.31	4.35	0.48		8	0							
5	1.12	0.40	1.06	0.10	1.17	3.15	0.91										
6	1.90	0.50	1.82	2.40	1.93	1.15	1.16	903		0.3	-						4
7	2.15	0.75	1.94	0.60	2.14	3.60	1.30	五						B	1 B2		+
8	2.00	0.67	2.20	0.50	2.15	6.75	1.23			N							
9	1.29	0.35	1.12	2.40	1.02	12.90	-0.54			0	1			FIAG			
10	2.16	4.60	2.13	0.15	1.95	15.75	0.67							DENG			
11	0.65	0.75	0.56	0.07	0.63	9.15	-0.74			5	4		_F2				
12	1.01	0.35	0.96	0.10	1.08	24.40	0.08		3	•		cref	5Ed				8
13	1.14	0.60	1.22	1.40	1.28	66.90	-0.96				-	00-					
14	2.26	0.60	2.39	1.35	2.14	9.60	0.95			0.0	-183						1
15	0.59	0.35	0.52	0.40	0.54	6.10	-1.15						2	3 8	12065		
16	1.15	1.75	1.14	0.10	1.25	15.75	-0.01				0.0		0.5	1.0	1.5		2.0

• A and Ec are marginally significant.

COMPARISON OF RFM AND PMM APPROACHES

SUMMARY OF RFM RESULTS

- $\hat{\log \beta^2} = 0.54 [+0.29X_A] 0.44X_{B1} 0.43X_D$ $[-0.04X_N - 0.02X_NX_A],$ $\hat{\log \sigma^2} = 0.59 [-0.42X_A - 0.19X_{B1} - 0.29X_D]$ $-1.27X_N + 0.41X_NX_A.$
- A marginally significant for both models; has opposite signs.
- *D, B1* are significant for the slope; have same signs.
- *E_c* identified from correlation plots but not considered due to absence of proper engineering justification.
- NA significant for ln(s²) : leads to practically important conclusions.

SUMMARY OF PMM RESULTS

- $\hat{PM} = -\hat{log}\beta^2 \hat{log}\sigma^2$
 - $= 0.05 + 0.71X_A 0.25x_{B1} 0.14X_D$
 - $1.23X_N 0.39X_NX_A.$

PM is directly modelled in this approach.

- Identifies A as significant.
- Misses D, B1.
- Identifies *Ec* as significant.
- Fails to identify effects involving noise owing to limitations of the analysis strategy.

SUMMARY AND CONCLUSIONS

- A design and analysis strategy for obtaining robust measurement systems is proposed.
- A random coefficients model can be effectively used for modeling and analysis of data.
- Variance components of the model have meaningful practical interpretations.
- The model helps in rigorous justification of each step involved in analysis.
- The RFM approach provides much more insightful results as compared to PMM.

Additional slides

Generalized version with noise factors

		Sign	al facto	or (<i>M</i>) le	vels	
Combined Control and Noise Array	<i>M</i> ₁	<i>M</i> ₂	<i>M</i> ₃	M_4		M_k
(X,N) [Single array] OR	Y ₁₁	Y ₁₂	Y ₁₃	Y ₁₄		Υ _{1k}
ৢ(X) ৺ ৢ(N) [Cross array]	Y ₂₁	Y ₂₂	Y ₂₃	Y ₂₄		Y _{2k}

- $Y = \alpha(X, N) + \beta(X, N)M + \sigma(X, N)\varepsilon$, where $\varepsilon \sim N(0, 1)$.
- $\hat{M} = (Y_{obs} \alpha(X, N)) / E_N(\beta(X, N)).$
- Obtain X such that $var(\hat{M})$ is minimized.

Questions and Concerns

- Statistical (Model-related) issues
 - Dependence of slope (β) and error variance (σ^2) on noise (shafts) not considered.
 - The model does not consider the fact that the noise (product) is a random factor.
- Engineering issues
 - Dependence of β and σ^2 on control x noise interactions may be of practical interest, for example,
 - A certain group of appraisers may have preference for a certain machine.
 - Incoming products from comparatively unreliable suppliers may be tested in a separate machine.