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Motivation

Multistage Car-body Assembly Process
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Challenge: How to deal with complex interactions
among the KPCs?
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Current Techniques

» Cause-selecting control chart (Zhang, Wade and Woodall)

» Variation analysis in multistage processes (Lawless and Mackay)
» Zantek’s method

® Analytical methods : known physical mechanism:

» Stream of Variation (SOV) methodologies

J

Generic methodology to identify interactions in
complex multistage processes are needed!
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Problem Formulation
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® Assumptions

» (A1) KPCs at the same stage do not influence each other
> (A2) Var(X;)=Local Variation + Propagated Variation (X;, i ®)

® The problem

» |dentify which preceding KPCs contribute variation to KPC j
=1,...,0
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Process layout
A graph
representing
direct influences

Objective
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Definition of “Direct Influence”

Direct Influence

If X; uniquely contributes to the variation of X;, then
we claim X; directly influences X; .

Variation of X; Variation of X; Variation of X;
explained by all explained by explained by X;
variables in @ all variables in adjusted for

® except X; other variables

Unique contribution of X,
=0 = X; has no #0 = X has
direct influence direct influence
on XJ- on Xj
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Connection with Graphical Models

_ _ Least Squares o _
ihas no direct Regression i 1Lj| @i} or

influence on j pt corr(i, j|B\{i}) =0
Normal Assumption

The graph ﬁ
representing direct Chain Graph
Influences Qy

A typical problem in Graphical Models:

build a Chain Graph
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Conventional Method

® Test
H; @ corr(i, jfa\i3) =0  vs. K;:corr(i, j|\{i}) =0, iee

° S e Conditioning set
Decision rule

H;; is rejected = X; has direct influence on X

® Drawback

t@ More variables involved
1 Lower detection power
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Proposed Methodology

Iterative CG building technique
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Comparison with Other Effort

Conventional method
H; @ corr(i, j|B\i}) =0  vs. Kj:corr(i, jlB\{i}) =0

@Reduce conditioning set

® Available effort ® Our effort

........... B (I,j)g@]\{l} R(I,j)g@]\{l}
: s.t. P s.t. :
gcorr(i, j|2\i}) = corr(, j|#'(i,))) gcorr(i, j|2\{i)=0 < corr(i, j|=(i.j)=0

J J

H;; © corr(l, jl#'(1,))) =0 . H;; @ corr(i, ji®(,])) =0
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Procedure to ldentify ®(i,))

Obtain G (j)and G°(i, j)

\ 4

Turn them into moral graphs
(G*(j)"and (G°(i, j)"

y

Identify M, C, M,, M, M,, B, CF

R(i,)=C

R(i,j)) = CUM, UM,
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vailable relationships

Step 1: Identify Two Subgraphs
A




Definition of Moral Graph

O—Q

@ Directed Independence
9 Graph D

I. Join viables with common children by undirected edges
II. Replace each direct edge with an undirected one

o Associated Moral Graph
Dm

!
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Step 3: Identify Important Subsets
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R(1,)) ldentified
General expression

R(1, )=CUM, UM, \B)LUCF
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Overview of Proof

® Goal L j| eI} < i IRGL)
® Steps of proof
property:  If (DTLYXor THZX (2) TLY[X.Z or TUZIX,Y

Then Y1IZIX,T < Y1 Z|X
1
Lemma 1: L jl e\i} <11 j|CuM
1
Lemma 2: L[ 8\i} <11 J|ICUM UM,
1
Goal: L[ 21} < 111 J[CUM;u(M,\B) UCF
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Statistical Testing Procedure
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® Procedure to identify ®(i,j)

® Test
H; @ corr(i, jIR(1,J) =0  vs. K : corr(i, j|R(i,j)) =0
® Decision rule

H;;is rejected = X; has direct influence on X;
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Partial Correlation Test

Let

____:l(%1+Wmu)
JIR(1,]) 9 1— r,”g{(,,n

Z

JIN=3=K(i, Dz ~ N, 1), N>
rijm(i,j)---- sample partial correlation

N-----sample size
K(i,j)-----number of variables in ®(I, )

!
;,- UW-Madison JJR%@”%

Conference
and QPRC 2006

19



® Selected KPCs

Case Study

® Process layout
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ldentified Graph and Test Results

Chain graph constructed

® Test results of identified direct influences (C=2.807)

Test # Partial Correlation Statistic
1 corr(2,5) -3.0717
2 corr(5,8) -3.3176
3 corr(4,9) 7.8978
4 corr(4,10[9) 8.1556
5 corr(6,12) 4.6126
6 corr(3,13) 7.2648
7 corr(6,13(12) -3.3438
8 corr(3,14) 3.7819
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Interpretation

X)\y
Body side
% \ < \\
\ RN
\ N
\
ixture \\ N




Summary and Future Work

® A new and efficient methodology to conquer inter-stage
complexity is presented and validated by case study

® A statistical testing procedure which can greatly reduce
the redundancy in the testing is developed to build the
chain graph of KPCs in a process

® Future work

> Extend the procedure to cases where (Al) is not satisfied

> Efficient algorithm to identify B and CF

> Study on overall errors of the procedure
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Comments

Questions

Suggestions
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