Inferring the Interactions in Complex Manufacturing Processes **Using Graphical Models**

Li Zeng

Shiyu Zhou Graduate Student Assistant Professor

Department of Industrial Engineering University of Wisconsin-Madison

06/08/06

Outline

- Motivation and Current Techniques
- Problem Formulation
- Conventional Method to Build CG
- Proposed Methodology and Procedure
- Overview of Proof
- Case Study
- Summary and Future Work

Motivation

Multistage Car-body Assembly Process

Challenge: How to deal with complex interactions among the KPCs?

Current Techniques

- Data-driven techniques for simple discrete processes
 - Cause-selecting control chart (Zhang, Wade and Woodall)
 - Variation analysis in multistage processes (Lawless and Mackay)
 - Zantek's method
- Analytical methods known physical mechanism
 - Stream of Variation (SOV) methodologies

Generic methodology to identify interactions in complex multistage processes are needed!

Problem Formulation

Assumptions

- > (A1) KPCs at the same stage do not influence each other
- \triangleright (A2) Var(X_i)=Local Variation + Propagated Variation (X_i , $i \in \mathcal{P}_i$)

The problem

► Identify which preceding KPCs contribute variation to KPC j j=1,..., q

Objective

A graph representing direct influences

Definition of "Direct Influence"

Direct Influence

If X_i uniquely contributes to the variation of X_j , then we claim X_i directly influences X_j .

 $=0 \Rightarrow X_i$ has no

direct influence

on X_i

 $\neq 0 \Rightarrow X_i$ has

on X_i

direct influence

Connection with Graphical Models

i has no direct influence on j

 $i \perp \!\!\! \perp j \mid \mathcal{P}_j \setminus \{i\} \text{ or }$ $\operatorname{corr}(i, j \mid \mathcal{P}_j \setminus \{i\}) = 0$

The graph representing direct

Chain Graph

A typical problem in Graphical Models: build a Chain Graph

Conventional Method

Test

$$H_{ij}$$
: corr $(i, j | \mathcal{P}_j \setminus \{i\}) = 0$ vs. K_{ij} : corr $(i, j | \mathcal{P}_j \setminus \{i\}) \neq 0$, $i \in \mathcal{P}_j$

Conditioning set

Decision rule

 H_{ii} is rejected $\Rightarrow X_i$ has direct influence on X_i

Drawback

More variables involved Larger conditioning set Lower detection power

Proposed Methodology

Iterative CG building technique

Comparison with Other Effort

Conventional method

$$H_{ij}$$
: corr $(i, j | \mathcal{P}_i \setminus \{i\}) = 0$

 H_{ii} : corr $(i, j | \mathcal{P}_i \setminus \{i\}) = 0$ vs. K_{ii} : corr $(i, j | \mathcal{P}_i \setminus \{i\}) \neq 0$

Reduce conditioning set

Available effort

$$\mathscr{P}(i,j) \subseteq \mathscr{P}_j \setminus \{i\}$$
 s.t. $\operatorname{corr}(i,j|\mathscr{P}_j \setminus \{i\}) = \operatorname{corr}(i,j|\mathscr{P}(i,j))$

 H_{ij} : corr $(i, j|\mathcal{P}'(i,j)) = 0$

Our effort

$$\mathcal{R}(i,j) \subseteq \mathcal{P}_{j} \setminus \{i\}$$
s.t.
 $\mathbf{corr}(i,j|\mathcal{P}_{j} \setminus \{i\}) = \mathbf{0} \Leftrightarrow \mathbf{corr}(i,j|\mathcal{R}(i,j)) = \mathbf{0}$

$$\bigcup_{i,j} H_{i,j} : \mathbf{corr}(i,j|\mathcal{R}(i,j)) = \mathbf{0}$$

Procedure to Identify $\Re(i,j)$

Step 1: Identify Two Subgraphs

Available relationships

Definition of Moral Graph

Directed Independence Graph D

- I. Join viables with common children by undirected edges
- II. Replace each direct edge with an undirected one

Associated Moral Graph D^m

Step 3: Identify Important Subsets

R(i,j) Identified

General expression

$$\mathcal{R}(i,j) = C \cup M_1 \cup (M_2 \setminus B) \cup CF$$

Overview of Proof

Goal

Steps of proof

Property: If $(1)T \perp \perp Y \mid X$ or $T \perp \perp Z \mid X$ (2) $T \perp \perp Y \mid X, Z$ or $T \perp \perp Z \mid X, Y$

Then $Y \perp \!\!\! \perp \!\!\! Z | X, T \Leftrightarrow Y \perp \!\!\! \perp \!\!\! Z | X$

 \bigcup

Lemma 1: $i \perp j \mid \mathcal{P}_i \setminus \{i\} \Leftrightarrow i \perp j \mid C \cup M$

 \bigcup

Lemma 2: $i \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! j | \mathcal{P}_j \backslash \{i\} \Leftrightarrow i \perp \!\!\! \perp \!\!\! j | C \cup M_1 \cup M_2$

 \bigcup

Statistical Testing Procedure

- Procedure to identify $\Re(i,j)$
- Test

$$H_{ij}$$
: corr $(i, j | \mathcal{R}(i,j)) = 0$ vs. K_{ij} : corr $(i, j | \mathcal{R}(i,j)) \neq 0$

Decision rule

 H_{ij} is rejected $\Rightarrow X_i$ has direct influence on X_j

Partial Correlation Test

Let

$$z_{ij|\mathcal{R}(i,j)} = \frac{1}{2} \log \frac{1 + r_{ij|\mathcal{R}(i,j)}}{1 - r_{ij|\mathcal{R}(i,j)}}$$

$$\sqrt{N-3-k(i,j)}z_{ij|\mathcal{R}(i,j)} \sim N(0,1), \quad N \to \infty$$

 $r_{ij/\Re(i,j)}$ ---- sample partial correlation

N-----sample size

k(i,j)----number of variables in $\Re(i,j)$

Case Study

Selected KPCs

Process layout

Identified Graph and Test Results

Chain graph constructed

Test results of identified direct influences (C=2.807)

Test #	Partial Correlation	Statistic
1	corr(2,5)	-3.0717
2	corr(5,8)	-3.3176
3	corr(4,9)	7.8978
4	corr(4,10 9)	8.1556
5	corr(6,12)	4.6126
6	corr(3,13)	7.2648
7	corr(6,13 12)	-3.3438
8	corr(3,14)	3.7819

Interpretation

Summary and Future Work

- A new and efficient methodology to conquer inter-stage complexity is presented and validated by case study
- A statistical testing procedure which can greatly reduce the redundancy in the testing is developed to build the chain graph of KPCs in a process
- Future work
 - > Extend the procedure to cases where (A1) is not satisfied
 - > Efficient algorithm to identify B and CF
 - > Study on overall errors of the procedure

