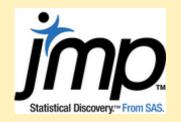


D-optimal Split-split-plot Designs

Bradley Jones SAS Institute Inc. Peter Goos University of Antwerp



Outline

- Motivation
 - Model
 - Algorithm
 - Advice concerning minimizing the number of whole plots
 - Counterintuitive Example
 - Effect of Changing Variance Ratios
 - Cheese Processing Example

Motivation – Why would you want to compute optimal SSPDs?

- Experiments on multi-step processes
- Processes having factors with varying degrees of difficulty to change

Example Application

Cheese Production has 3 stages

- 1. Store milk in large tanks
- 2. Divide milk from tanks among curds processors and make curds.
- 3. Further process the curds to make individual cheeses.

Outline

- Motivation
- →• Model
 - Algorithm
 - Advice concerning minimizing the number of whole plots
 - Counterintuitive Example
 - Effect of Changing Variance Ratios
 - Cheese Processing Example

Model

$$Y = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}_{1}\boldsymbol{\gamma}_{1} + \mathbf{Z}_{2}\boldsymbol{\gamma}_{2} + \boldsymbol{\varepsilon}$$
$$\mathbf{Z}_{1} = \mathbf{I}_{b_{1}} \otimes \mathbf{1}_{b_{2}k}$$
$$\mathbf{Z}_{2} = \mathbf{I}_{b_{1}} \otimes \mathbf{I}_{b_{2}} \otimes \mathbf{1}_{k} = \mathbf{I}_{b_{1}b_{2}} \otimes \mathbf{1}_{k}$$
$$\mathbf{E}(\boldsymbol{\varepsilon}) = \mathbf{0}_{n} \text{ and } \operatorname{cov}(\boldsymbol{\varepsilon}) = \sigma_{\varepsilon}^{2}\mathbf{I}_{n},$$
$$\mathbf{E}(\boldsymbol{\gamma}_{1}) = \mathbf{0}_{b_{1}} \text{ and } \operatorname{cov}(\boldsymbol{\gamma}_{1}) = \sigma_{\gamma_{1}}^{2}\mathbf{I}_{b_{1}},$$
$$\mathbf{E}(\boldsymbol{\gamma}_{2}) = \mathbf{0}_{b_{1}b_{2}} \text{ and } \operatorname{cov}(\boldsymbol{\gamma}_{2}) = \sigma_{\gamma_{2}}^{2}\mathbf{I}_{b_{1}b_{2}},$$

Where **X** is the design matrix for the fixed effects, **Z**₁ is an indicator matrix for the whole plots, **Z**₂ is an indicator matrix for the subplots, β is a vector of fixed effects, γ_1 is a vector of the whole plot random effects, γ_2 is a vector of the subplot random effects, ε is the vector random errors, b₁ is the number of whole plots, b₂ is the number of subplots per whole plot and k is the number of runs per subplot.

Variance of Y

$$\mathbf{V} = \sigma_{\varepsilon}^{2} \mathbf{I}_{n} + \sigma_{\gamma_{1}}^{2} \mathbf{Z}_{1} \mathbf{Z}_{1}' + \sigma_{\gamma_{2}}^{2} \mathbf{Z}_{2} \mathbf{Z}_{2}'$$

Information Matrix

$\mathbf{M} = \mathbf{X}' \mathbf{V}^{-1} \mathbf{X}$

the D-optimal design maximizes the determinant of M

IM

Determinant depends on unknown variance ratios.

$$\eta_1 = \sigma_{\gamma_1} / \sigma_{\epsilon}$$

$$\eta_2 = \sigma_{\gamma_2} / \sigma_{\epsilon}$$

You don't have to calculate the inverse of V!

Theorem 1 The inverse of the covariance matrix V is equal to

1

$$\mathbf{V}^{-1} = \sigma_{\varepsilon}^{-2} \mathbf{I}_n - c_1 \mathbf{Z}_1 \mathbf{Z}_1' - c_2 \mathbf{Z}_2 \mathbf{Z}_2',$$

where

and

$$c_{1} = \sigma_{\varepsilon}^{-2} \frac{\eta_{1} - \frac{\eta_{1}\eta_{2}k}{1 + \eta_{2}k}}{1 + \eta_{1}b_{2}k + \eta_{2}k}$$
$$c_{2} = \sigma_{\varepsilon}^{-2} \frac{\eta_{2}}{1 + \eta_{2}k}.$$

Algorithm

Inspired by coordinate exchange Meyer & Nachtsheim *Technometrics* 1995

Starting Design

WP	SP	X1	X2	X3
1	1	0.25	0.37	-0.66
1	1	0.25	0.37	0.05
1	2	0.25	-0.69	-0.87
1	2	0.25	-0.69	-0.72
2	3	0.57	0.44	-0.59
2	3	0.57	0.44	0.49
2	4	0.57	-0.87	-0.74
2	4	0.57	-0.87	-0.74

Determinant = 0.026

After First Row

WP	SP	X1	X2	Х3
1	1	-1.00	1.00	-1.00
1	1	-1.00	1.00	0.05
1	2	-1.00	-0.69	-0.87
1	2	-1.00	-0.69	-0.72
2	3	0.57	0.44	-0.59
2	3	0.57	0.44	0.49
2	4	0.57	-0.87	-0.74
2	4	0.57	-0.87	-0.74

Determinant = 1.456

After 2nd Row

WP	SP	X1	X2	Х3
1	1	-1.00	1.00	-1.00
1	1	-1.00	1.00	1.00
1	2	-1.00	-0.69	-0.87
1	2	-1.00	-0.69	-0.72
2	3	0.57	0.44	-0.59
2	3	0.57	0.44	0.49
2	4	0.57	-0.87	-0.74
2	4	0.57	-0.87	-0.74

Determinant = 3.182

After 3rd Row

WP	SP	X1	X2	X3
1	1	-1.00	1.00	-1.00
1	1	-1.00	1.00	1.00
1	2	-1.00	-1.00	1.00
1	2	-1.00	-1.00	-0.72
2	3	0.57	0.44	-0.59
2	3	0.57	0.44	0.49
2	4	0.57	-0.87	-0.74
2	4	0.57	-0.87	-0.74

Determinant = 6.46

After 4th Row

WP	SP	X1	X2	X3
1	1	-1.00	1.00	-1.00
1	1	-1.00	1.00	1.00
1	2	-1.00	-1.00	1.00
1	2	-1.00	-1.00	-1.00
2	3	0.57	0.44	-0.59
2	3	0.57	0.44	0.49
2	4	0.57	-0.87	-0.74
2	4	0.57	-0.87	-0.74

Determinant = 7.20

After 5th Row

WP	SP	X1	X2	X3
1	1	-1.00	1.00	-1.00
1	1	-1.00	1.00	1.00
1	2	-1.00	-1.00	1.00
1	2	-1.00	-1.00	-1.00
2	3	1.00	1.00	-1.00
2	3	1.00	1.00	0.49
2	4	1.00	-0.87	-0.74
2	4	1.00	-0.87	-0.74

Determinant = 16.777

After 6th Row

WP	SP	X1	X2	X3
1	1	-1.00	1.00	-1.00
1	1	-1.00	1.00	1.00
1	2	-1.00	-1.00	1.00
1	2	-1.00	-1.00	-1.00
2	3	1.00	1.00	-1.00
2	3	1.00	1.00	1.00
2	4	1.00	-0.87	-0.74
2	4	1.00	-0.87	-0.74

Determinant = 19.86

After 7th Row

WP	SP	X1	X2	Х3
1	1	-1	1	-1
1	1	-1	1	1
1	2	-1	-1	1
1	2	-1	-1	-1
2	3	1	1	-1
2	3	1	1	1
2	4	1	-1	1
2	4	1	-1	-0.74

Determinant = 26.19

Optimal Design

WP	SP	X1	X2	Х3
1	1	-1	1	-1
1	1	-1	1	1
1	2	-1	-1	1
1	2	-1	-1	-1
2	3	1	1	-1
2	3	1	1	1
2	4	1	-1	1
2	4	1	-1	-1

Determinant = 27.86

Graphical Kinetic View

Bubble Plot Demonstration

Outline

- Motivation
- Model
- Algorithm
- Advice concerning minimizing the number of whole plots
 - Counterintuitive Example
 - Effect of Changing Variance Ratios
 - Cheese Processing Example

What if you can only do 2 whole plots?

i.e. the whole plot factor is *really* hard to change

Recommendation

Make sure that you include two-factor interactions involving the whole plot factor in the model

Example

- One whole plot factor 2 whole plots
- One subplot factor 4 subplots
- Three sub-subplot factors 24 runs

Optimal Design

Whole plot	Subplot	w	s	t_1	t_2	t_3	Whole plot	Subplot	w	s	t_1	t_2	t_3
1	1	-1	1	-1	-1	-1	2	3	1	-1	-1	-1	1
1	1	-1	1	-1	-1	1	2	3	1	-1	-1	1	-1
1	1	-1	1	-1	1	-1	2	3	1	-1	1	1	1
1	1	-1	1	-1	1	1	2	3	1	-1	1	-1	-1
1	1	-1	1	1	-1	-1	2	3	1	-1	-1	1	1
1	1	-1	1	1	1	1	2	3	1	-1	1	1	-1
1	2	-1	-1	1	-1	1	2	4	1	1	1	-1	1
1	2	-1	-1	-1	1	-1	2	4	1	1	1	1	-1
1	2	-1	-1	-1	-1	-1	2	4	1	1	1	1	1
1	2	-1	-1	-1	1	1	2	4	1	1	-1	1	1
1	2	-1	-1	1	1	-1	2	4	1	1	-1	-1	-1
1	2	-1	-1	1	1	1	2	4	1	1	-1	-1	1

jmp.

Coefficient Variances

Stratum	Effect	Variance
WP	Intercept	0.796875
WP	w	0.796875
SP	s	0.296875
SP	ws	0.296875
SSP	t_1	0.046875
SSP	t_2	0.046875
SSP	t_3	0.046875
SSP	wt_1	0.046875
SSP	wt_2	0.046875
SSP	wt_3	0.046875
SSP	st_1	0.046875
SSP	st_2	0.046875
SSP	st_3	0.046875
SSP	$t_1 t_2$	0.046875
SSP	$t_{1}t_{3}$	0.046875
SSP	$t_{2}t_{3}$	0.046875

Outline

- Motivation
- Model
- Algorithm
- Advice concerning minimizing the number of whole plots
- Counterintuitive Example
 - Effect of Changing Variance Ratios
 - Cheese Processing Example

Diagonal information matrix = Optimal Design?

For 2-level completely randomized designs orthogonality equates to optimality.

e.g. all 2-level orthogonal designs are also globally optimal.

But, this may not be true for split-split-plot designs!

Example:

- Two whole plot factors with eight whole plots
- One subplot factor with 16 subplots
- Three sub-subplot factors with 32 runs.

Design

jmp.

					200				10 M	2-2				-	
Whole plot	Subplot	w_1	w_2	8	t_1	t_2	t_3	Whole plot	Subplot	w_1	w_2	8	t_1	t_2	t_3
1	1	1	1	1	-1	-1	1	5	9	-1	-1	1	1	1	-1
1	1	1	1	1	1	1	-1	5	9	-1	-1	1	-1	-1	-1
1	2	1	1	-1		-1	-1	5	10	-1	-1	-1	1	-1	1
1	2	1	1	-1	-1	1	1	5	10	-1	-1	-1	-1	1	1
2	3	-1	1	-1	-1	-1	1	6	11	1	-1	-1	1	1	-1
2	3	-1	1	-1	1	1	-1	6	11	1	-1	-1	-1	-1	1
2	4	-1	1	1	1	-1	-1	6	12	1	-1	1	1	-1	1
2	4	-1	1	1	-1	1	1	6	12	1	-1	1	-1	1	-1
3	Ċr.	1	-1	-1	-1	-1	-1	7	13	-1	1	1	1	-1	1
3	5	1	-1	-1	1	1	1	7	13	-1	1	1	-1	1	-1
3	6	1	-1	1	1	-1	-1	7	14	-1	1	-1	-1	-1	-1
3	6	1	-1	1	-1	1	1	7	14	-1	1	-1	1	1	1
4	7	-1	-1	-1	-1	1	-1	8	15	1	1	-1	-1	1	-1
4	7	-1	-1	-1	1	-1	-1	8	15	1	1	-1	1	-1	1
4	8	-1	-1	1	1	1	1	8	16	1	1	1	1	1	1
4	8	-1	-1	1	-1	-1	1	8	16	1	1	1	-1	-1	-1

Features of Design

The information matrix is not diagonal. There are three off-diagonal elemennts.

Fractional Factorial Alternatives

- There are very many designs with diagonal information matrices.
- Construction method of the best we could find.

1.
$$t_2 = w_1 w_2 st_1$$

2. Use contrast columns w_1 , w_2 and $w_2t_1t_3$ to partition the 8 whole plots.

imp

Coefficient Variances

Stratum	Effect	D-optimal	Alternative]
WP	Intercept	0.21875	0.21875	
WP	w_1	0.21875	0.21875	
WP	w_2	0.21875	0.21875	
WP	w_1w_2	0.21875	0.21875	
SP	s	0.09375	0.09375	
SP	w_1s	0.09375	0.09375	
SP	w_2s	0.09375	0.09375	
SSP	t_1	0.03125	0.03125	
SSP	t_2	0.03125	0.03125	
SSP	t_3	0.04167	0.03125	
SSP	w_1t_1	0.03125	0.03125	
SSP	w_1t_2	0.03125	0.03125	
SSP	w_1t_3	0.04167	0.03125	
SSP	$w_2 t_1$	0.03125	0.03125	
SSP	$w_2 t_2$	0.03125	0.03125	
SSP	$w_2 t_3$	0.04167	0.03125	
SSP	st_1	0.03125	0.03125	
SSP	st_2	0.03125	0.03125	
SSP	st_3	0.03977	0.03125	
SSP	$t_1 t_2$	0.09375	0.09375	
SSP	$t_1 t_3$	0.07721	0.21875	
SSP	$t_2 t_3$	0.06908	0.09375	

Outline

- Motivation
- Model
- Algorithm
- Advice concerning minimizing the number of whole plots
- Counterintuitive Example
- Effect of Changing Variance Ratios
 - Cheese Processing Example

Determinant depends on variance ratios

How much difference does this make?

Example

- One whole plot factor six whole plots
- One subplot factor 12 subplots
- Three easy-to-change factors 24 runs
- Model with main effects and all two-factor interactions
- Consider all combinations of *log10*(η₁) and *log10*(η₂) each with three levels -1, 0 and 1.

There were six different designs, but...

	η_1				
η_2	0.1	1.0	10		
0.1	98.5%	99.3%	100%		
1.0	98.7%	100%	100%		
10	95.5%	95.6%	95.7%		

Assuming that the true variance ratios were both 1, here are the relative efficiencies of the designs. There is little practical difference.

Outline

- Motivation
- Model
- Algorithm
- Advice concerning minimizing the number of whole plots
- Counterintuitive Example
- Effect of Changing Variance Ratios
- Cheese Processing Example

Cheese Processing Experiment

- Two milk storage factors (8 whole plots)
- Five curds production factors (32 subplots)
- Three cheese making factors one at 4 levels with 128 total runs

Study Design - Resolution IV

But, using our algorithm, we found a design that could estimate all the two-factor interactions and was orthogonal for the main effects.

We also found a design with only one quarter of the runs that was orthogonal for all the main effects.

Design – 32 runs

Whole plot	Subplot	w_1	w_2	s_1	s_2	s_3	s_4	s_5	t_1	t_2	t_3
1	1	1	-1	-1	-1	-1	1	1	1	1	D
1	1	1	-1	-1	-1	-1	1	1	-1	-1	В
1	2	1	-1	1	1	1	-1	-1	1	-1	Α
1	2	1	-1	1	1	1	-1	-1	-1	1	С
2	3	1	1	1	1	-1	1	-1	1	1	В
2	3	1	1	1	1	-1	1	-1	-1	-1	D
2	4	1	1	-1	-1	1	-1	1	-1	-1	Α
2	4	1	1	-1	-1	1	-1	1	1	1	С
3	5	-1	1	1	1	1	1	1	1	-1	С
3	5	-1	1	1	1	1	1	1	-1	1	D
3	6	-1	1	-1	-1	-1	-1	-1	-1	1	Α
3	6	-1	1	-1	-1	-1	-1	-1	1	-1	В
4	7	-1	-1	-1	1	-1	1	-1	-1	-1	С
4	7	-1	-1	-1	1	-1	1	-1	1	1	Α
4	8	-1	-1	1	-1	1	-1	1	-1	1	D
4	8	-1	-1	1	-1	1	-1	1	1	-1	В
5	9	1	-1	-1	1	-1	-1	1	-1	1	С
5	9	1	-1	-1	1	-1	-1	1	1	-1	D
5	10	1	-1	1	-1	1	1	-1	1	1	Α
5	10	1	-1	1	-1	1	1	-1	-1	-1	В
6	11	-1	-1	-1	1	1	-1	-1	1	-1	D
6	11	-1	-1	-1	1	1	-1	-1	-1	1	В
6	12	-1	-1	1	-1	-1	1	1	-1	1	Α
6	12	-1	-1	1	-1	-1	1	1	1	-1	С
7	13	-1	1	1	1	-1	-1	1	-1	-1	Α
7	13	-1	1	1	1	-1	-1	1	1	1	В
7	14	-1	1	-1	-1	1	1	-1	1	1	С
7	14	-1	1	-1	-1	1	1	-1	-1	-1	D
8	15	1	1	1	-1	-1	-1	-1	-1	-1	С
8	15	1	1	1	-1	-1	-1	-1	1	1	D
8	16	1	1	-1	1	1	1	1	-1	1	В
8	16	1	1	-1	1	1	1	1	1	-1	Α

Coefficient Variances

Stratum	Effect	Variance
WP	Intercept	7/32
WP	w_1	7/32
WP	w_2	7/32
SP	s_1	3/32
SP	s_2	3/32
SP	s_3	3/32
SP	s_4	3/32
SP	s_5	3/32
SSP	t_1	1/32
SSP	t_2	1/32
SSP	$t_{3}[1]$	3/64
SSP	$t_{3}[2]$	3/64
SSP	$t_{3}[3]$	1/32

Summary

- 1. We have supplied an algorithmic approach for computing SSPDs.
- 2. The approach is useful for either screening or RSM.
- 3. We discussed the problem of confounding of whole plot fixed effects and variances and proposed a practical way of proceeding.
- 4. We introduced a case where diagonal information matrices appear not to be optimal.
- 5. We considered the effect of unknown variance ratios on the design more work to do here.
- 6. We applied our method to a previously run experiment with useful results.

Contact Information

Bradley.Jones@jmp.com

