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…a micron is as good as a mile
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Loss functions

Quantify the loss (cost) of variation 
from target

τ

Loss
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Specification Limits

Hard limits determined by 
customer:

Material inside the limits is “good”
Material outside the limits is “bad”
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Step function loss

The use of specification limits for product 
screening implies step function loss:

Step
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Quadratic Loss
Taguchi (and others) recognized that step 
function loss was unrealistic, and proposed 
quadratic loss:

Quadratic
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Inverted Normal Loss

Bounds the loss between zero and one
Recognizes that fact that all material too far 
from target is equally bad
Has very useful mathematical properties:

Bounded and infinitely differentiable 
Scalable to model real losses
Simple closed-form solution for expected value 
with normally distributed processes
Extends to multivariate case with ease
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INL is a scaled inverted probability 
density function for the normal 
distribution
τ is process target, λ is a scale 
parameter
Loss is zero at target
Larger λ gives a less sensitive loss 
function
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UDN(x) with lambda=0.78
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UDN(x) with lambda=0.50
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Why INLF?
In the semiconductor industry, a micron is 
as good as a mile
Unlike many low-tech industries, losses far 
from target can occur with non-zero 
probabilty
A lithography critical dimension 20 nm off-
target is no worse than one 5 nm off-
target, so they should be assigned the 
same loss
Quadratic loss distorts loss computations 
and leads to sub-optimal decisions
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Extensions to simple INLF

Asymmetric INLFs have similar 
properties
Any form of distribution can be used to 
model the process, but numerical 
integration may be required for 
expected values
INLF properties extend easily to 
MINLF, where correlations between 
process variables can have interesting 
consequences
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More general inverted probability 
loss functions

Leung and Spiring introduced and 
developed an entirely new family of 
loss functions based in inverted pdfs:

Beta
Gamma
Some results for general IPLFs
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Parameter estimation

Best to estimate λ from actual loss 
data using non-linear regression 
based on historical data
If actual loss data is unavailable, or 
consistency with step-function loss is 
required, choose λ to give 50% loss 
at a specification limit:

λ=0.425(USL-LSL)
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Expected Loss

If the process is normally distributed with 
mean μ and standard deviation σ, then the 
average loss from that process will be:
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PDF of INLF

Through standard transformation 
methods the loss pdf (with normal 
processes) is given by:
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f(z)
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MGF of INLF

Should be an easy integration
…or an infinite series based on 
moments (see Leung and Spiring)
As far as we know, this is an unsolved 
problem
I’ll buy a marguerita for the first 
person solving this problem
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Applications of INLF

Quantify process quality
Evaluate alternative process targets
Evaluate process and equipment 
changes
Alternative to squared-error loss for 
robust regression
Alternative to squared-error loss in 
Bayesian estimation
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Expected loss and Cpk

Expected loss gives a truer picture of 
process health than Cpk
Deviation from target is always 
reflected in expected loss
Atypical process distributions or loss 
relationships are also comprehended
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Cpk and Percent OOS

For normally 
distributed process 
data with two-sided 
specification limits, 
there is a simple 
correspondence 
between Cpk and the 
percent of material 
out of specification

Cpk Proportion OOS
0.33 3.173E-01
0.67 4.550E-02
1.00 2.700E-03
1.33 6.337E-05
1.67 5.742E-07
2.00 1.980E-09
2.33 2.576E-12
2.67 1.332E-15
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Cpk is often misused

Cpk is applied to non-normally 
distributed data - probability 
interpretations no longer apply here
Cpk is applied to processes with one-
sided specification limits
A process can run far off target, but 
with small variance, and still have 
acceptable Cpk
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Comparison of Cpk and ELINL

The expected loss “punishes”
deviation from target, even if the 
process standard deviation is small
Expected loss can also be computed 
for other underlying distributions, so 
is not dependent on the assumption 
of process normality
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Expected Loss Computation
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Expected Loss with Process 1.5 Standard Deviations Off-Target
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Expected loss with Standard Deviation 50% of Usual
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Multivariate INLF

First proposed by Drain and Gough, 
1996
Accounts for synergy or antagonism 
among the process (or noise) 
variables
Expected loss (with multivariate 
normal process) has a simple solution
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MINLF definition

x and τ are p-vectors
L is a p × p positive definite matrix 
analogous to the covariance matrix in 
a multivariate normal distribution 
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Parameter interpretation

Off diagonal elements express non-
spherical losses:

Positive entries indicate antagonism:  
loss is greater when variables move 
simultaneously in the same direction
Negative entries indicate synergy:  loss 
is less when variables move 
simultaneously in the same direction
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L 0.8 -0.25
-0.25 1.3
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Parameter estimation

Non-linear fitting on the basis of 
historical data seems the best 
method
Assuming zero off-diagonal elements 
will probably lead to unrealistic 
models
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Expected loss with multivariate 
normal process distribution
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Exploiting MINLF

Quantify process quality with 
expected loss
Evaluate alternative process targets
Evaluate process and equipment 
changes
Predict results from feed-forward 
process control
Optimize feed-forward schemes



Drain&Cudney QPRC 2007 37

Process loss example

Normally 
distributed 
process and 
MINLF

M 1.000 0.700
0.700 1.000

L 2.89 1.802
1.802 2.66

mu 0.12
0.25

tau 0
0

EL 0.261
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Effect of process correlation
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Ongoing and future research

Creating a “replacement package” for 
Taguchi loss functions 

Naresh Sharma, Beth Cudney
Documenting our research in robust 
regression with INLF 

Lance Kaminski
Push the case for replacement of Cpk
as a process health indicator

Melissa Baeten
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