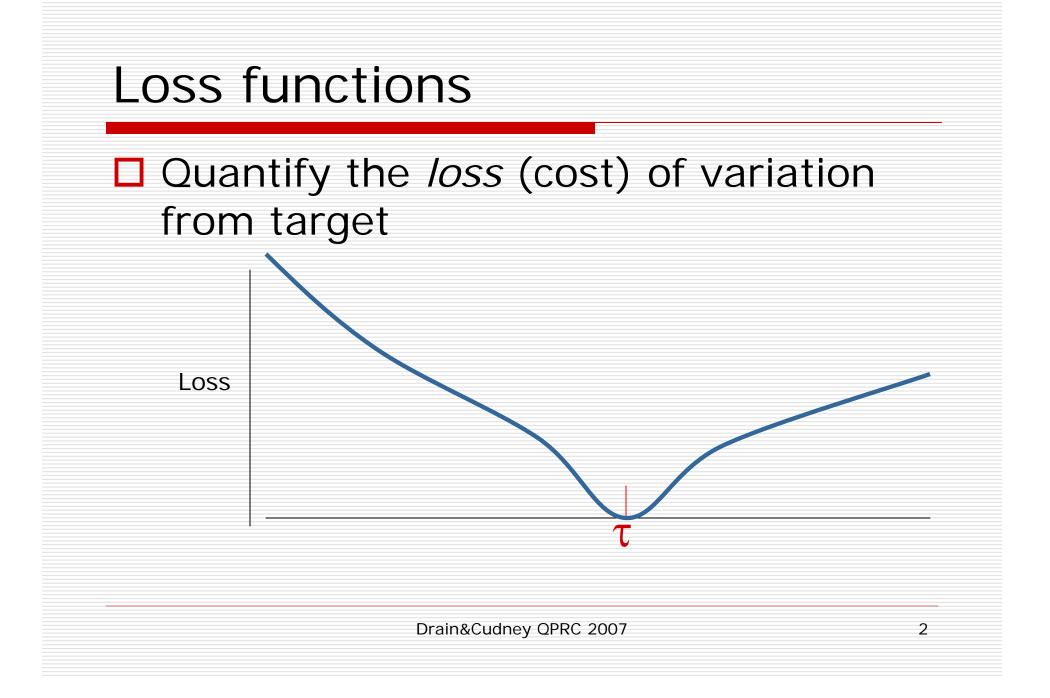
Multivariate Inverted Normal Loss Functions

David Drain and Elizabeth Cudney University of Missouri-Rolla Missouri University of Science and Technology

...a micron is as good as a mile



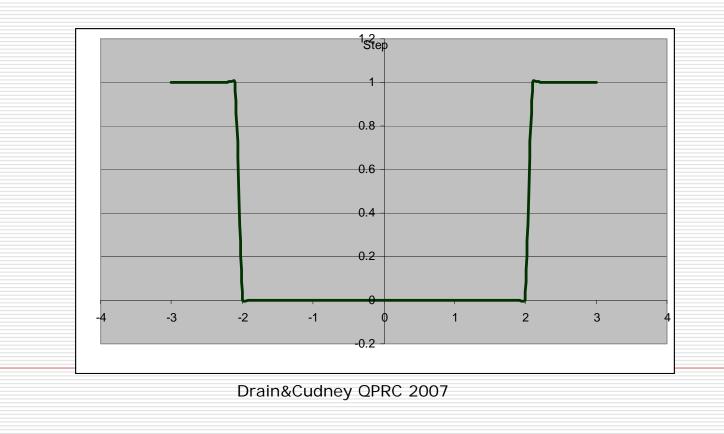
Specification Limits

Hard limits determined by customer:

- Material inside the limits is "good"
- Material outside the limits is "bad"

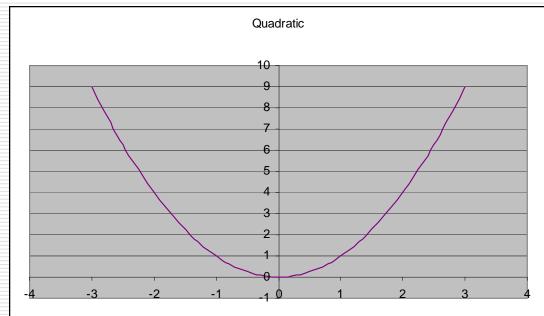
Step function loss

The use of specification limits for product screening implies step function loss:



Quadratic Loss

Taguchi (and others) recognized that step function loss was unrealistic, and proposed quadratic loss:

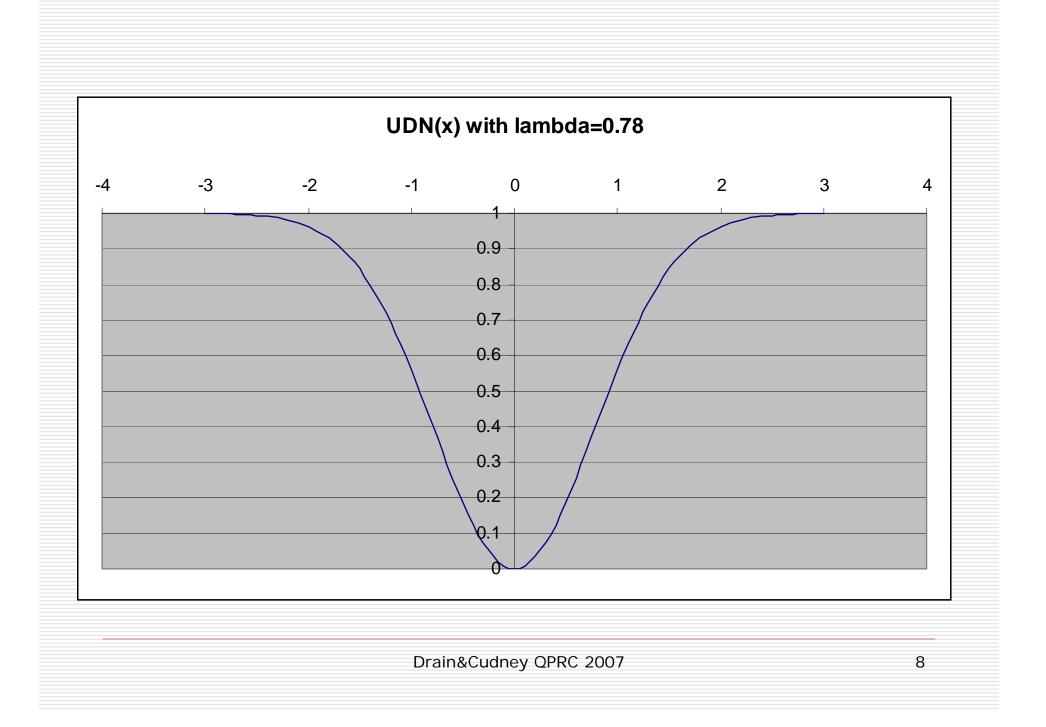


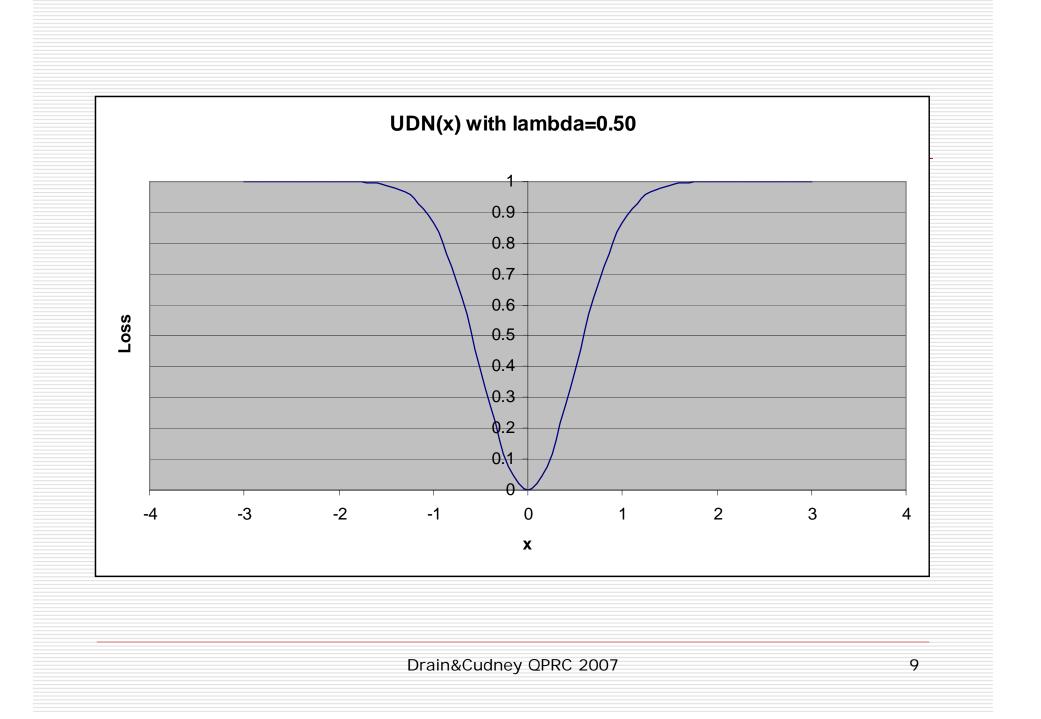
Inverted Normal Loss

- Bounds the loss between zero and one
- Recognizes that fact that all material too far from target is equally bad
- Has very useful mathematical properties:
 - Bounded and infinitely differentiable
 - Scalable to model real losses
 - Simple closed-form solution for expected value with normally distributed processes
 - Extends to multivariate case with ease

 $(x-\tau)^2$ $2\lambda^2$ $L(x;\tau,\lambda) = 1 - e$

- INL is a scaled inverted probability density function for the normal distribution
- $\Box \tau$ is process target, λ is a scale parameter
- Loss is zero at target
- Larger λ gives a less sensitive loss function





Why INLF?

- In the semiconductor industry, a micron is as good as a mile
- Unlike many low-tech industries, losses far from target can occur with non-zero probability
- A lithography critical dimension 20 nm offtarget is no worse than one 5 nm offtarget, so they should be assigned the same loss
- Quadratic loss distorts loss computations and leads to sub-optimal decisions

Extensions to simple INLF

- Asymmetric INLFs have similar properties
- Any form of distribution can be used to model the process, but numerical integration may be required for expected values
- INLF properties extend easily to MINLF, where correlations between process variables can have interesting consequences

More general inverted probability loss functions

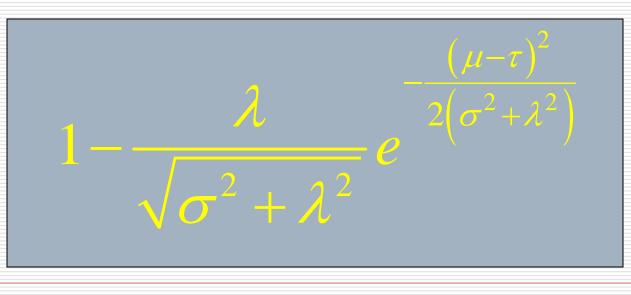
- Leung and Spiring introduced and developed an entirely new family of loss functions based in inverted pdfs:
 - Beta
 - Gamma
 - Some results for general IPLFs

Parameter estimation

- Best to estimate λ from actual loss data using non-linear regression based on historical data
- If actual loss data is unavailable, or consistency with step-function loss is required, choose λ to give 50% loss at a specification limit:
 - λ=0.425(USL-LSL)

Expected Loss

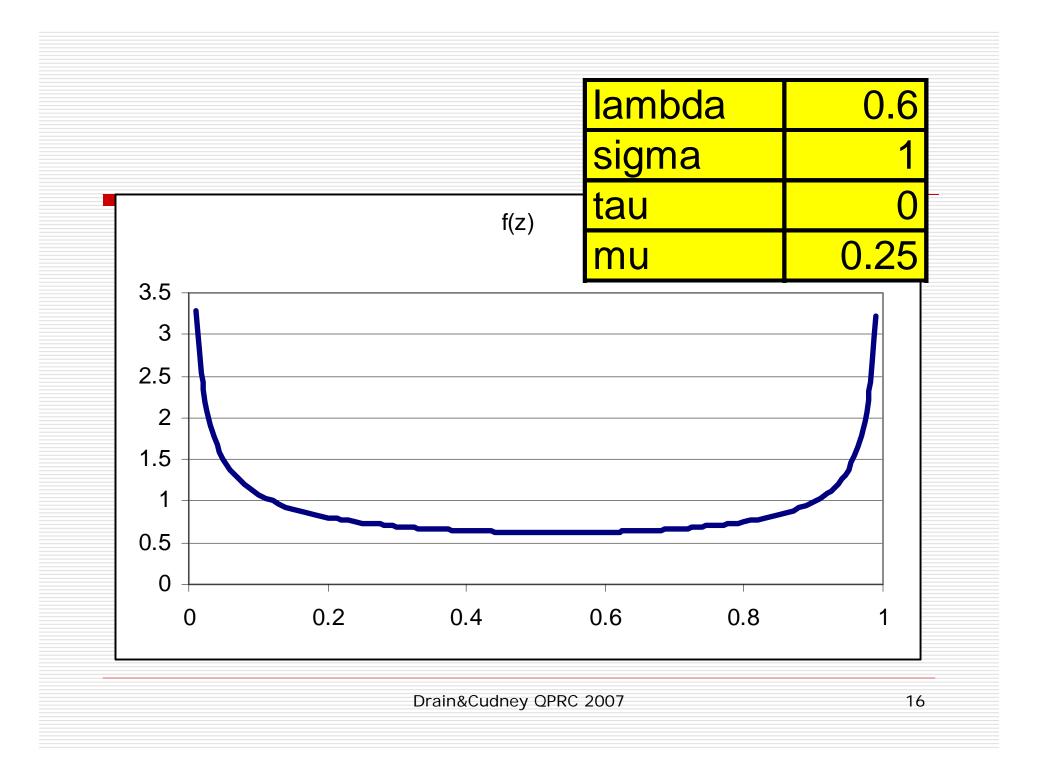
If the process is normally distributed with mean μ and standard deviation σ, then the average loss from that process will be:

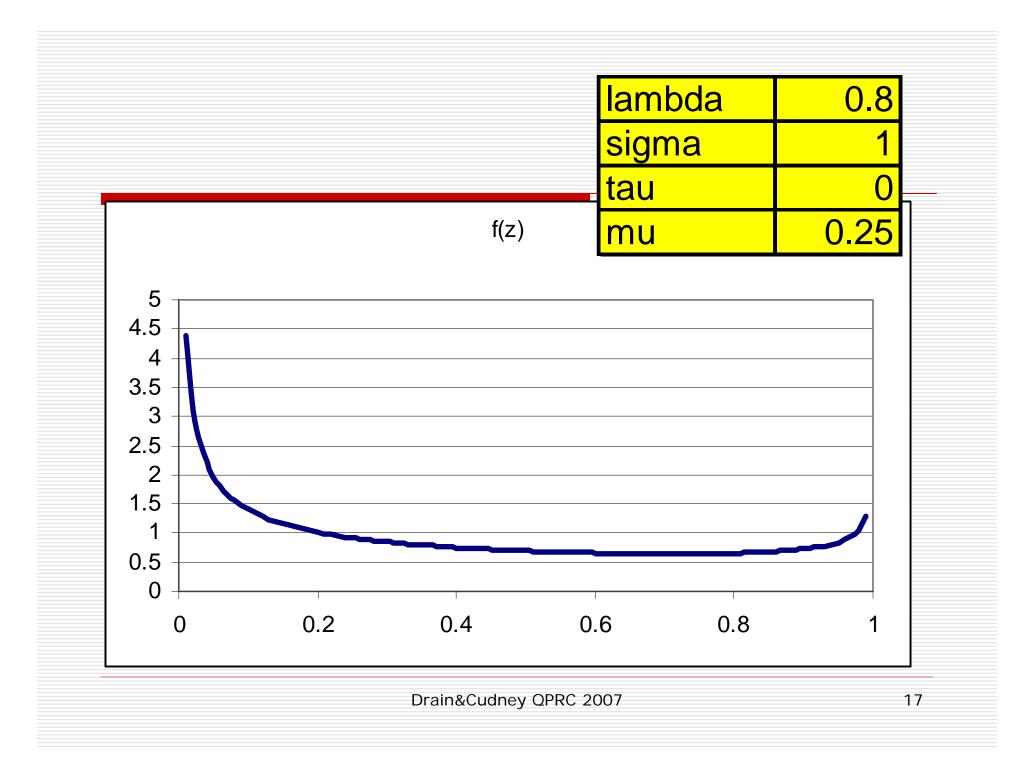


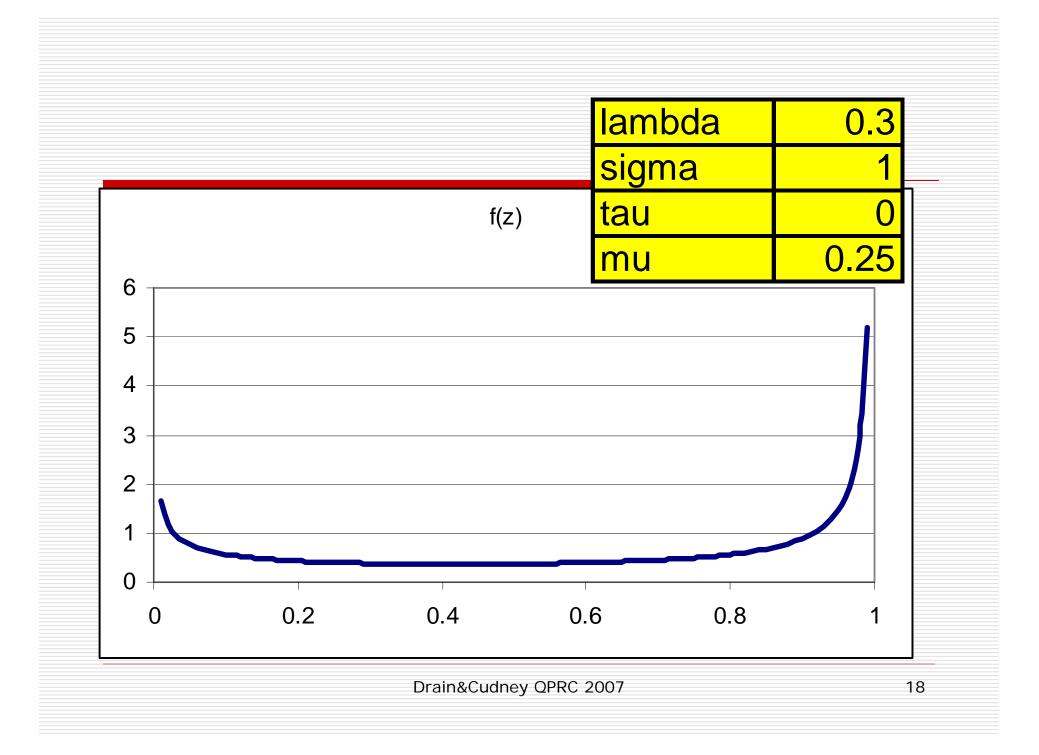
PDF of INLF

Through standard transformation methods the loss pdf (with normal processes) is given by:

$$f(z) = \frac{\lambda \left(-\ln(1-z)\right)^{-\frac{1}{2}}}{2(1-z)\sqrt{\pi}\sigma} \begin{cases} e^{-\frac{\left(\tau + \lambda \sqrt{-2\ln(1-z)} - \mu\right)^2}{2\sigma^2}} + e^{-\frac{\left(\tau - \lambda \sqrt{-2\ln(1-z)} - \mu\right)^2}{2\sigma^2}} \end{cases}$$







MGF of INLF

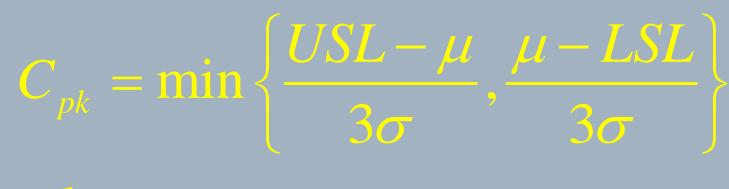
- Should be an easy integration
- ...or an infinite series based on moments (see Leung and Spiring)
- As far as we know, this is an unsolved problem
- I'll buy a marguerita for the first person solving this problem

Applications of INLF

- Quantify process quality
- Evaluate alternative process targets
- Evaluate process and equipment changes
- Alternative to squared-error loss for robust regression
- Alternative to squared-error loss in Bayesian estimation

Expected loss and Cpk

- Expected loss gives a truer picture of process health than Cpk
- Deviation from target is always reflected in expected loss
- Atypical process distributions or loss relationships are also comprehended



where

μ = process mean σ = process standard deviation USL = upper specification limit LSL = lower specification limit

C_{pk} and Percent OOS

□ For normally distributed process data with two-sided specification limits, there is a simple correspondence between C_{pk} and the percent of material out of specification

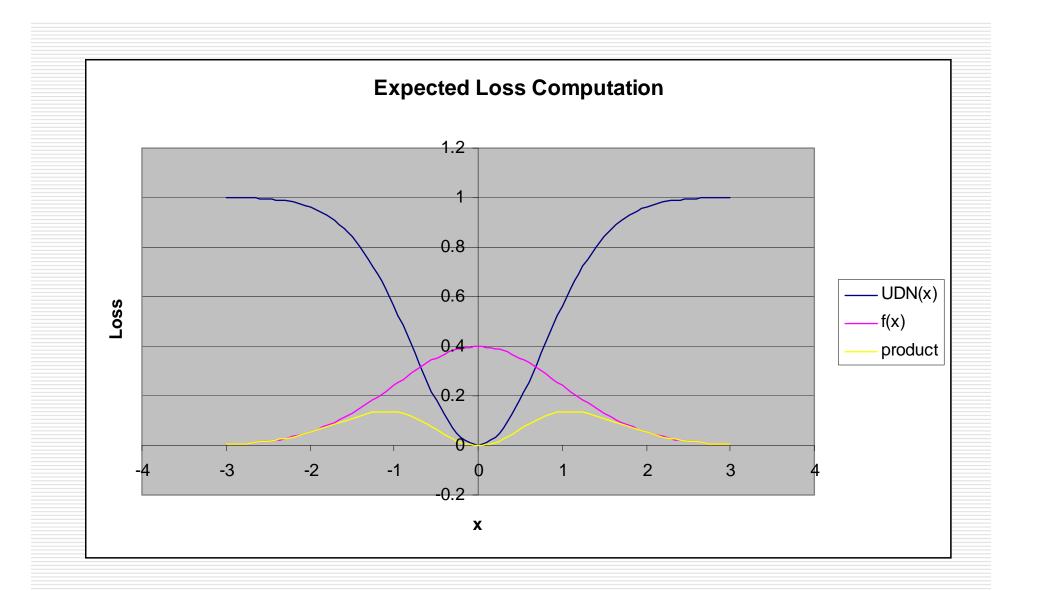
Cpk	Proportion OOS
0.33	3.173E-01
0.67	4.550E-02
1.00	2.700E-03
1.33	6.337E-05
1.67	5.742E-07
2.00	1.980E-09
2.33	2.576E-12
2.67	1.332E-15
2.07	1.332L-13

C_{pk} is often misused

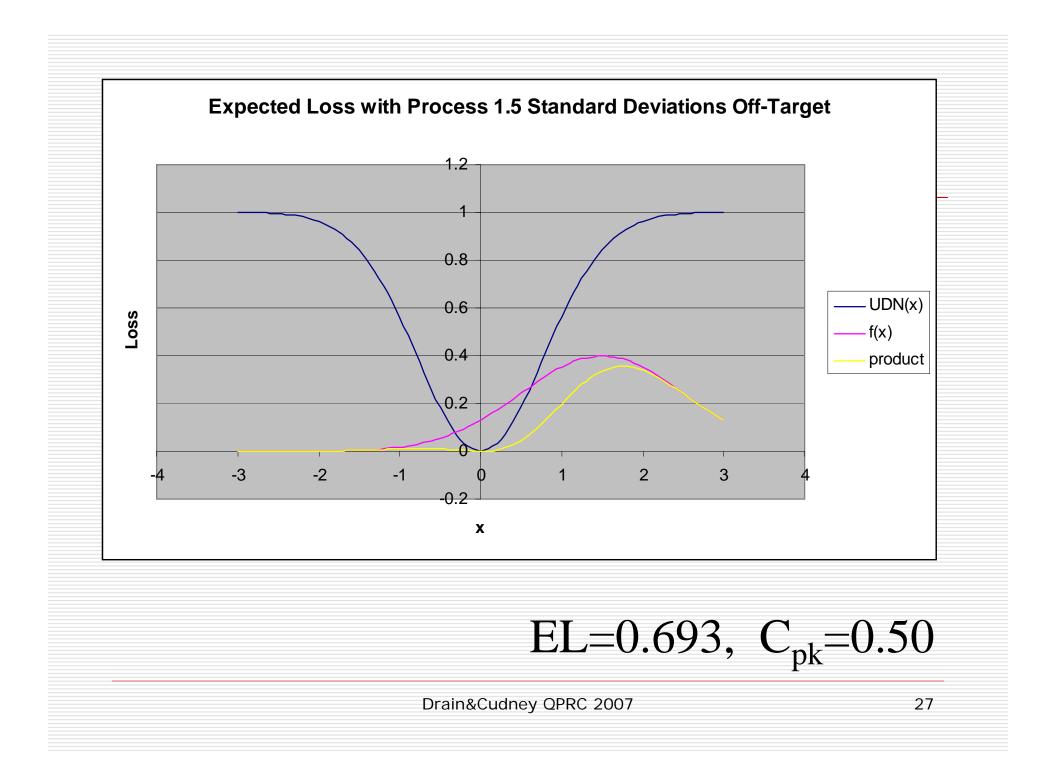
- C_{pk} is applied to non-normally distributed data - probability interpretations no longer apply here
- C_{pk} is applied to processes with onesided specification limits
- A process can run far off target, but with small variance, and still have acceptable C_{pk}

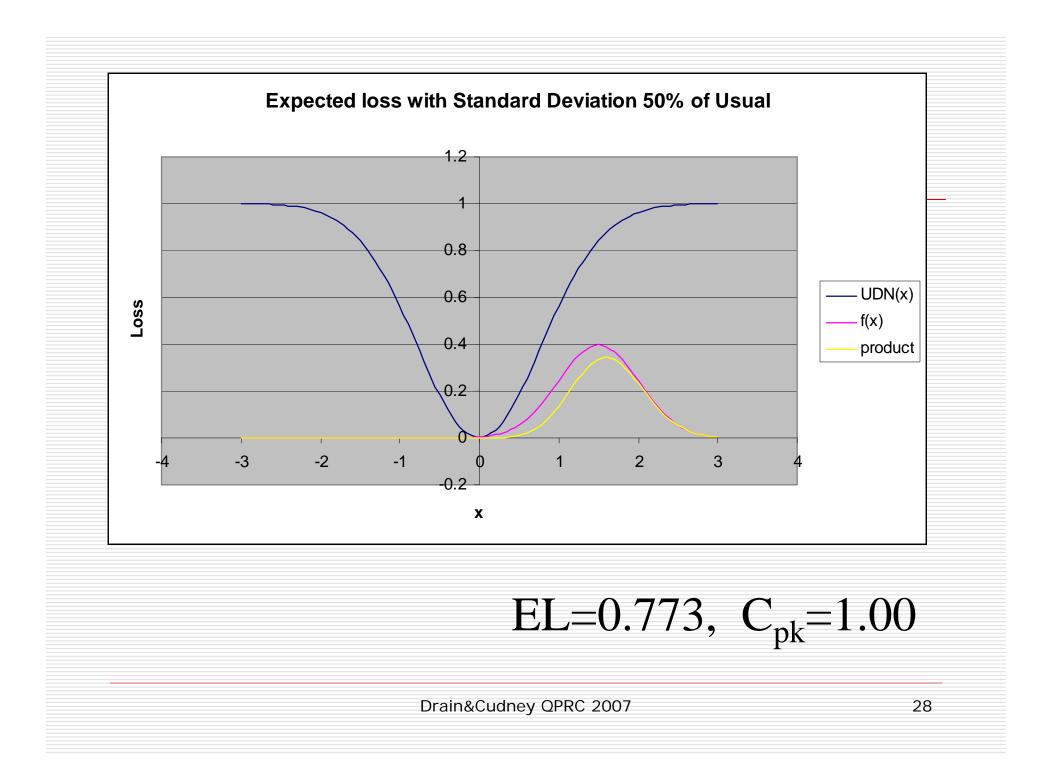
Comparison of C_{pk} and EL_{INL}

- The expected loss "punishes" deviation from target, even if the process standard deviation is small
- Expected loss can also be computed for other underlying distributions, so is not dependent on the assumption of process normality



Specification limits are at +/- 3





Multivariate INLF

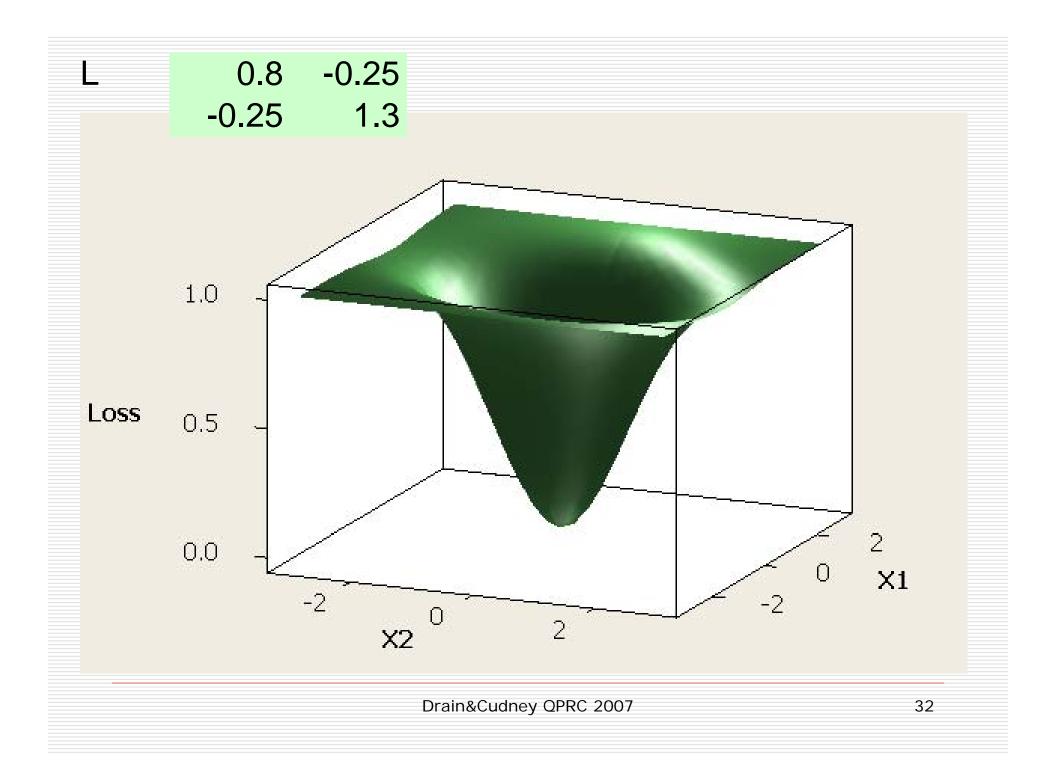
- First proposed by Drain and Gough, 1996
- Accounts for synergy or antagonism among the process (or noise) variables
- Expected loss (with multivariate normal process) has a simple solution

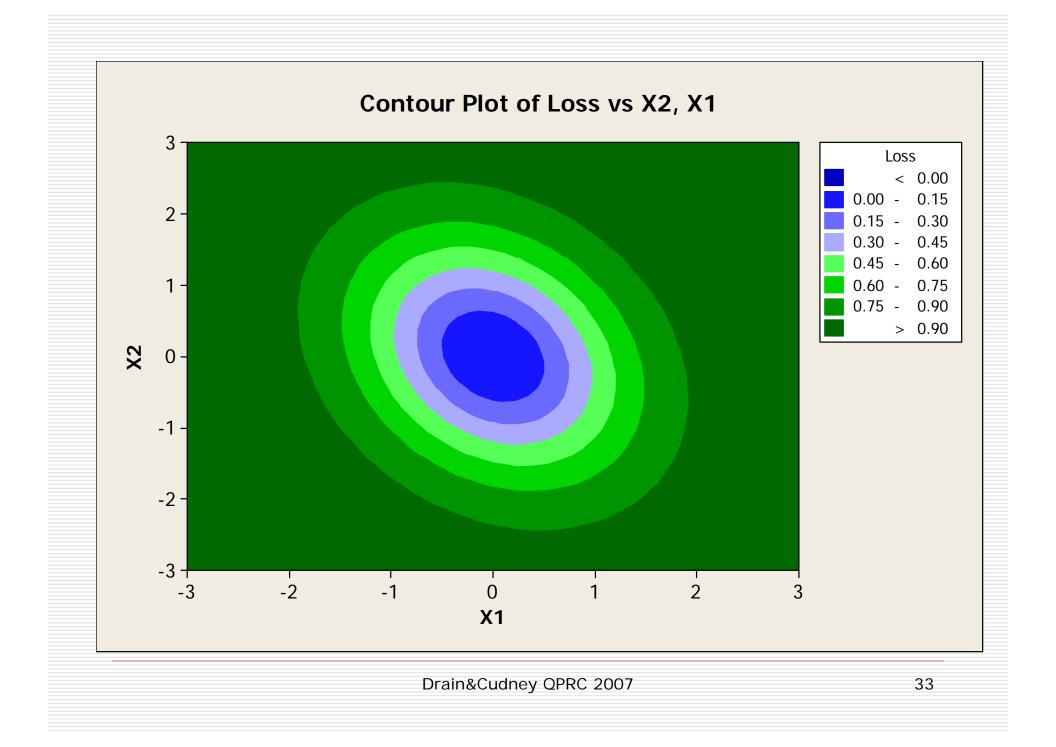
MINLF definition $L(x;\tau,L) = 1 - e^{-\frac{1}{2}(x-\tau)^T L^{-1}(x-\tau)}$ $x \text{ and } \tau \text{ are } p \text{-vectors}$ $L \text{ is a } p \times p \text{ positive definite matrix}$ analogous to the covariance matrix in

a multivariate normal distribution

Parameter interpretation

- Off diagonal elements express nonspherical losses:
 - Positive entries indicate antagonism: loss is greater when variables move simultaneously in the same direction
 - Negative entries indicate synergy: loss is less when variables move simultaneously in the same direction





Parameter estimation

- Non-linear fitting on the basis of historical data seems the best method
- Assuming zero off-diagonal elements will probably lead to unrealistic models

Expected loss with multivariate normal process distribution

 $\frac{L^{-1} + M^{-1}}{\rho^{-2}} e^{-\frac{1}{2} \left(\mu^{T} M^{-1} \mu + \tau^{T} L^{-1} \tau \right)} \times$

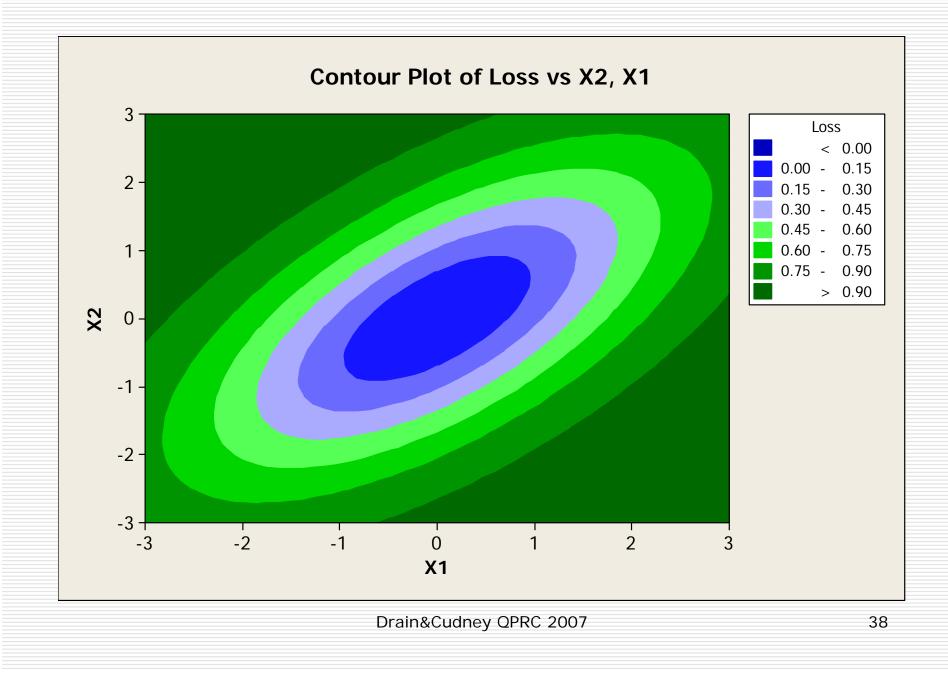
 $\rho^{\frac{1}{2}\left(\mu^{T}M^{-1} + \tau^{T}L^{-1}\right)\left(L^{-1} + M^{-1}\right)\left(M^{-1}\mu + L^{-1}\tau\right)}$

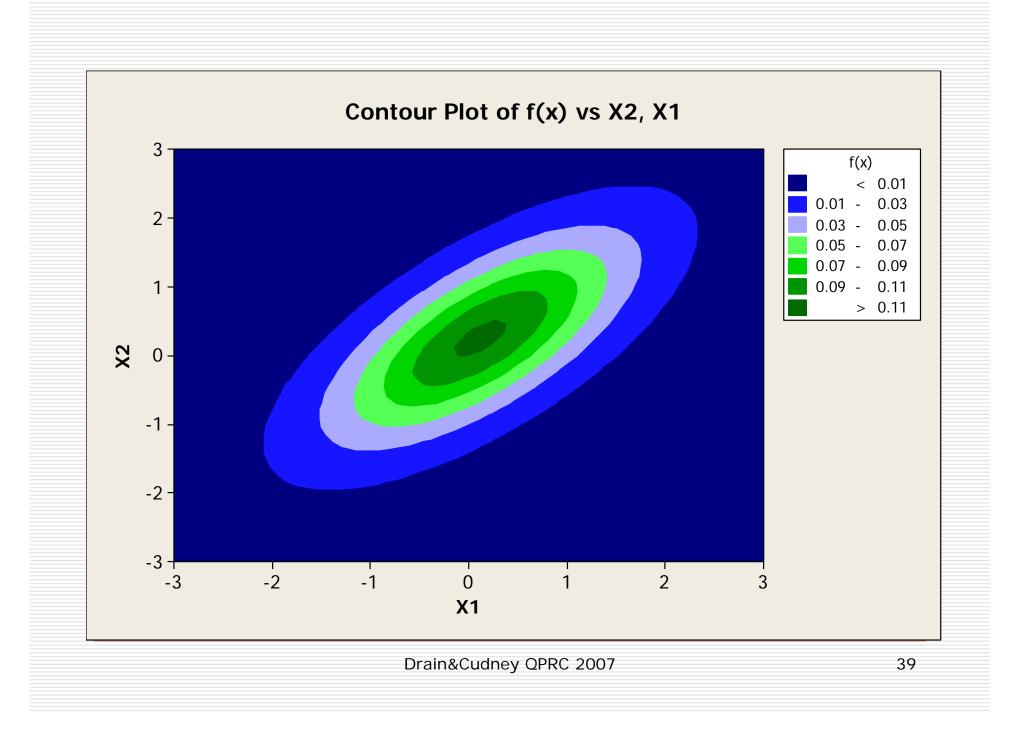
Exploiting MINLF

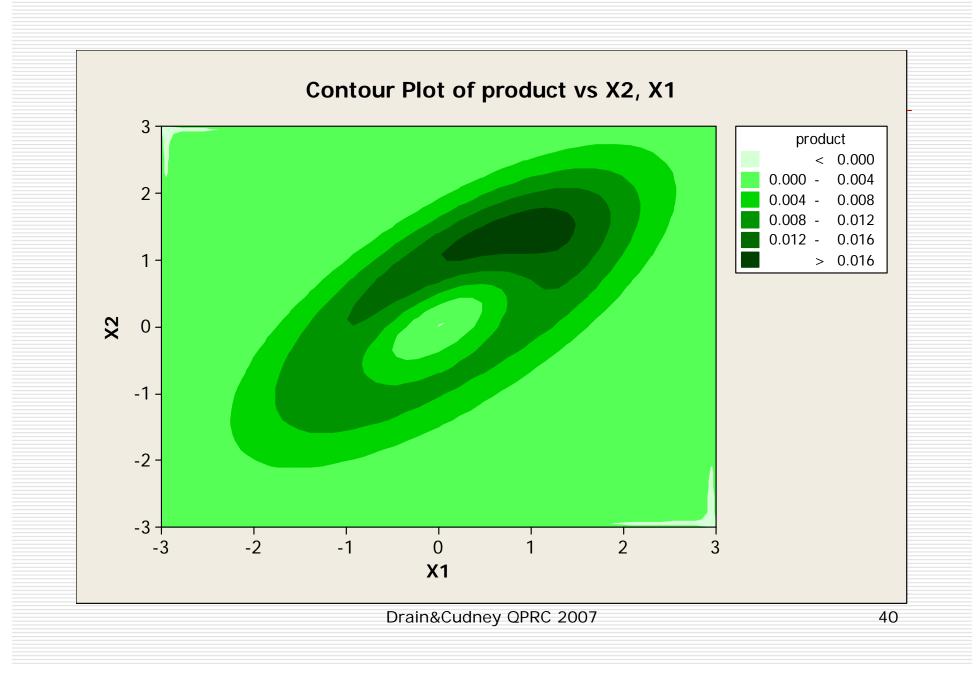
- Quantify process quality with expected loss
- Evaluate alternative process targets
- Evaluate process and equipment changes
- Predict results from feed-forward process control
- Optimize feed-forward schemes

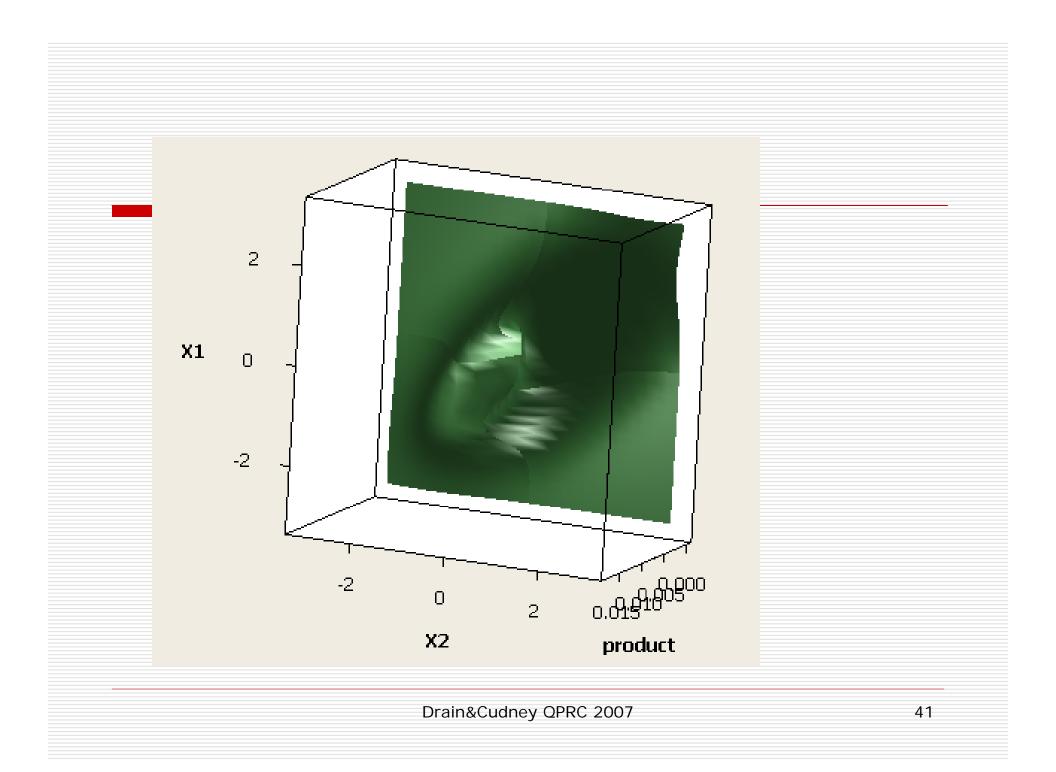
Process loss example

	EL	0 0.261	
	tau	0	
		0.25	
	mu	0.12	
MINLF		1.802	2.66
process and		2.89	1.802
distributed		0.700	1.000
Normally	Μ	1.000	0.700

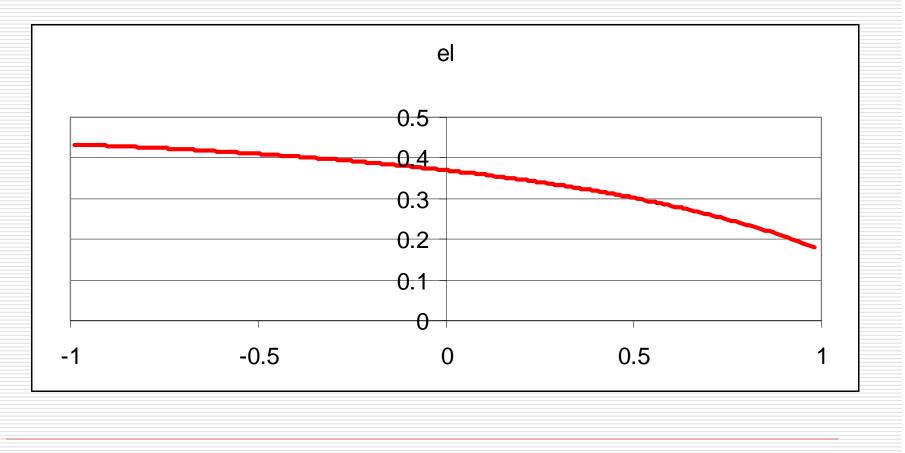








Effect of process correlation



Ongoing and future research

- Creating a "replacement package" for Taguchi loss functions
 - Naresh Sharma, Beth Cudney
- Documenting our research in robust regression with INLF

Lance Kaminski

- Push the case for replacement of Cpk as a process health indicator
 - Melissa Baeten

References

- D.C. Drain and A.M. Gough, "Applications of the Upside-Down Normal Loss Functions, "IEEE Transactions on Semiconductor Manfuacturing, Vol. 9 No. 1, pp 143-145, 1996.
- B.P.K. Leung and Fred Spiring, "Some Properties of the Family of Inverted Probability Loss Functions", *Quality Technology & Quantitative Management*, Vol1, No 1, pp 125-147, 2004.