Statistical Process Monitoring of Nonlinear Profiles Using Wavelets

June 4, 2007

QPRC

- Modern industrial processes generate complex data
- Profiles: data pairs (x, y) that can be described as y = f(x)
- Examples
 - Calibration curves in chemical processing
 - Oxide thickness across wafers in semiconductors
 - Radar signals of military targets.
- Examine sequences of such data sets

- Want to know if a profile is different from some desired, in-control state
- When did change occur?
- What is the nature of change?
- Want a method that applies to very general profile functions f

- Much work on linear profiles (Woodall 2004, Mahmoud et al. 2007)
- Estimate changes in parameters (slope, intercept, ...)
- Determine when parameters change

- What if profiles are not linear?
- Or more generally, not parametric?

Radar Profile

Angle

- f^0 is known, in-control profile, f^t is observed profile
- Suppose f^t is a very general function:

$$\|f^t - f^0\|_2^2 = \int (f^t - f^0)^2 < \infty$$

- No constraint on form of the profile
- Very weak constraint on the difference of profiles

• Observed profiles

$$y^t = f^t(x) + \epsilon$$

- $\epsilon \sim \text{normal} (0, \sigma^2)$, independent
- Hypotheses

$$H_0: ||f^t - f^0||_2^2 = 0, \quad t = 1, 2, \dots, T$$

$$H_a: ||f^t - f^0||_2^2 > 0, \quad t = \tau + 1, \tau + 2, \dots, T$$

• In particular

$$f^0 = f^1 = \dots = f^{\tau} \neq f^{\tau+1} = \dots = f^T$$

• Find τ

• These L_2 differences can be written in terms of wavelets coefficients

$$||f^t - f^0||_2^2 = ||\theta^t - \theta^0||_2^2$$

- Moved from function domain to wavelet domain
- Why wavelets?
 - Well-suited for nonparametric estimation
 - Don't need to know much about the form of the functions being estimated
 - Optimally small estimation errors (Donoho & Johnstone 1994)
 - Fast computation time
 - Good at local and global estimation simultaneously

• Rewrite hypotheses in terms of wavelets

$$H_0: \|\theta^t - \theta^0\|_2^2 = 0 \text{ for } t = 1, 2, \dots, T$$

$$H_a: \|\theta^t - \theta^0\|_2^2 > 0 \text{ for } t = \tau + 1, \tau + 2, \dots, T$$

• Use observed (noisy) data and Discrete Wavelet Transform (DWT) to estimate differences

$$\|f^{t} - f^{0}\|_{2}^{2} = \|\theta^{t} - \theta^{0}\|_{2}^{2} \approx \|\tilde{\theta}^{t} - \tilde{\theta}^{0}\|_{2}^{2}$$

• Set

$$W_t = \frac{n}{\sigma^2} \|\tilde{\theta}^t - \tilde{\theta}^0\|_2^2$$

• Then, for each $t, W_t \sim \chi^2_{n,\gamma}$ where

$$\gamma = \frac{n}{\sigma^2} \sum_j (\theta_j^t - \theta_j^0)^2 = \frac{n}{\sigma^2} \|\theta^t - \theta^0\|_2^2$$

is the non-centrality parameter

• Equivalent hypotheses:

$$H_0: \ \gamma = 0 \text{ for } t = 1, 2, \dots, T$$

$$H_a: \ \gamma > 0 \text{ for } t = \tau + 1, \tau + 2, \dots, T$$

- Form a likelihood using $W_t, t = 1, 2, \ldots, T$
- Under the null hypothesis,

$$L_0 = \prod_{t=1}^T f(w_t) = \prod_{t=1}^T \frac{w_t^{n/2-1} e^{-w_t/2}}{2^{n/2} \Gamma(n/2)}.$$

• Under the alternative,

$$L_{a} = \prod_{t=1}^{\tau} \frac{w_{t}^{n/2-1} e^{-w_{t}/2}}{2^{n/2} \Gamma(n/2)}$$
$$\cdot \prod_{t=\tau+1}^{T} \left\{ \frac{w_{t}^{n/2-1} e^{-w_{t}/2}}{2^{n/2}} \sum_{k=0}^{\infty} \frac{e^{-\gamma/2} (\gamma/4)^{k}}{k!} \cdot \frac{w_{t}^{k}}{\Gamma(n/2+k)} \right\}$$

• The likelihood ratio can be expressed as

$$\frac{L_a}{L_0} = \prod_{t=\tau+1}^T \left\{ \sum_{k=0}^\infty \frac{e^{-\gamma/2} (\gamma/4)^k w_t^k}{k!} \cdot \frac{\Gamma(n/2)}{\Gamma(n/2+k)} \right\}$$

• Simplified, the log of the likelihood ratio is

$$\log\left(\frac{L_a}{L_0}\right) \approx \frac{\gamma}{2} \sum_{t=\tau+1}^T \left(\frac{w_t}{E(W_t|H_0)} - 1\right)$$

• Need to estimate γ

- Estimate γ with DWT and thresholding
- Wavelets are sparse: they concentrate the information in a function into relatively few coefficients
- So, most coefficients can be treated as 0
- Thresholding sets to 0 (or shrinks toward 0) select coefficients θ
- Gives accurate estimation
- Removes noise

• Let $\hat{\gamma}(\tau)$ be thresholded wavelet estimate of γ

$$\hat{\gamma}(\tau) = \frac{1}{T - \tau} \sum_{t=\tau+1}^{T} \|\hat{\theta}_d^t\|_2^2 - \frac{1}{\tau} \sum_{t=1}^{\tau} \|\hat{\theta}_d^t\|_2^2$$

• Depends on unknown τ

- Reject H_0 when likelihood ratio is large
- When is $\log (L_a/L_0)$ largest? \Rightarrow When τ is correctly specified
- So, maximize $\log (L_a/L_0)$ over τ
- Provides estimate of $\tau \Rightarrow$ estimate of $\gamma \Rightarrow$ estimate of LR

- Estimate of τ uses prior information: all profiles up to the current profile are observed
- Use this to determine if LR is "too large"
- "Too large" is found via simulation $(ARL_0 = 200)$
- If LR large, then profiles after τ are out-of-control
- Otherwise, profiles are still in-control at T

- This proposed method works well, even for very small differences $(L_2 \text{ difference})$
- Simulated several types of difference functions
 - Parabolic
 - Horizontal shift
 - Broken Line
 - Isolated linear shifts
 - Others
- Used erratic profile

Parabolic Difference

Broken Line Difference

- Compare to M^1 (Fan 1996), M^2 (Jin & Shi 2001), M^3 (Jeong et al. 2006)
- Compare via ARL_0
- Three wavelet based estimators
- These three do not provide τ or size of divergence
- Do not use prior information, either

Parabolic	0.01	0.04	0.09	0.16	0.25
M^1	124.87	36.84	8.02	2.18	1.14
M^2	88.07	14.64	2.69	1.16	1.01
M^3	65.68	21.89	6.96	2.12	1.14
M^*	74.18	5.29	1.39	1.02	1.00
Broken Line	0.01	0.04	0.09	0.16	0.25
M^1	126.80	37.28	8.38	2.30	1.18
M^2	91.84	14.26	2.70	1.14	1.00
M^3	69.36	19.52	6.38	2.12	1.17
M^*	85.57	8 83	1 69	1 03	1 00

Parabolic	0.01	0.04	0.09	0.16	0.25
ARL_{10}	76.07	5.30	1.32	1.01	1.00
$\hat{ au}$	50.13	11.84	9.69	9.86	9.99
\hat{a}	0.03	0.05	0.08	0.15	0.25
Broken Line	0.01	0.04	0.09	0.16	0.25
ARL_{10}	86.62	7.94	1.67	1.03	1.00
$\hat{ au}$	55.33	12.79	9.99	9.86	9.99
\hat{a}	0.03	0.04	0.08	0.15	0.25

$$\tau = 10$$

- What is the scale of these differences we are detecting?
- On next graph, exaggerate the "Broken Line" difference by 100 (a = 25)

- What was actually looked at was $a \leq 0.25$
- Next graph, a = 0.25, the largest difference considered

Radar Profiles

- Proposed method now applied to profiles of military radar signatures
- Changes from a known profile of the target could indicate
 - A vehicle had moved
 - Some new ground activity was taking place
- Proposed method correctly identified out-of-control profile for any ordering of profiles

Summary

- Examine functions in wavelet domain
- Form likelihood ratio
- Use wavelet thresholding to estimate parameters in the LR
- Proposed methods specifies when to reject H_0
- Tells when out-of-control profile occurred $(\hat{\tau})$
- Estimates amount of divergence from in-control
- Makes use of prior information
- Joint work with J. Simpson & J. Pignatiello (FSU, IE Dept)

References

- DONOHO, D. and JOHNSTONE, I. (1994). Ideal spatial adaptation via wavelet shrinkage. *Biometrika* **81** 425–455.
- FAN, J. (1996). Test of significance based on wavelet thresholding and Neyman's truncation. J. Am. Stat. Assoc. **91** 674–688.
- JEONG, M., LU, J. and WANG, N. (2006). Wavelet-based SPC procedure for complicated functional data. International Journal of Production Research 44 729–744.
- JIN, J. and SHI, J. (2001). Automatic feature extraction of waveform signals for in-process diagnostic performance improvement. J. Intell. Manuf. 12 140–145.
- MAHMOUD, M., PARKER, P., WOODALL, W. and HAWKINS, D. (2007). A change point method for linear profile data. *Qual. Reliab. Eng. Int.* **23** 247–268.
- WOODALL, W., SPITZNER, D., MONTGOMERY, D. and GUPTA, S. (2004). Using control charts to monitor process and product quality profiles. *Journal* of Quality Technology **36** 309–320.