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Part I Background

Need for Network Measurements

Match available network resources to demands.

• Evaluate the state of the network;

• Characterize the performance experienced by users;

• Control actions required.
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Motivation for Sampling in Network

Problem with the original design of network protocols

• Basic TCP/IP protocol: Best Effort Service Model→ highly aggregated data

• Time Sensitive Services (for example: Internet Telephony)→ more fined grained

measurements: fine time scale, at the traffic flow level.

Solution: Sampling Techniques

• Packet Monitoring: copying a stream of packets from the internal fast, then selecting,

storing, analyzing and exporting information on these packets.

• Flow Monitoring: collect statistics at flow level; heavy-tailed nature (Willinger,W.

(1997)):CHALLENGE
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Network Sampling Implementation Issues

• Routers can sample packets, NOT flows

• Originally, only systematic sampling available (1/100 packets)

• More recently, probabilistic sampling possible
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Part II Estimating Characteristics of Traffic Flows

Understanding the characteristics of traffic flows is crucial for allocating the necessary

resources (bandwidth) to accommodate users demand.
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Problem Formulation

Suppose on a network link there are M active flows, comprised of Nm, m = 1, ..., M

packets each. The number of packets in each flow is referred to as the flow length. The

payload of each packet consists of Z
(i)
m , i = 1, ..., Nm bytes and the size of the m-th

flow in bytes is given by Bm =
∑Nm

i=1 Z
(i)
m , which is referred to as the flow size.

Bernoulli sampling scheme

: Observed data are sampled flow lengths n1, n2, ..., nr , and their corresponding flow

sizes b1, b2, ..., br, with bk =
∑nk

i=1 Z
(i)
k

{n1, n2, ..., nr}: {j, gj}, j = 1, ..., J

NOTE: an online implementation of such a sampling scheme yields biased samples for

long flows.
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Objective:

1. estimate non-parametrically and semi-parametrically the flow length distribution F of

the link, and in addition estimate the original length of sampled flows

Ni, i = 1, 2, ..., r;

2. estimate the flow size (expressed in bytes) distribution G and similarly estimate the

original flow sizes Bi, i = 1, 2, ..., r;

3. estimate the number of active flows M in the link.

G(B0) = P(
N∑

i=1

Z(i) = B0) =
∫

N

P[
N∑

i=1

Z(i) = B0|N ]dF (N) =
∫

N

Q(B0|N)dF (N).

(1)
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Nonparametric Estimation of Flow Length Distribution F

Model

L(φi, M) = (
M

g0, g1, ...gJ

)
∏
j≥0

(
∑
i∈SI

φicij)gj (2)

Notation

φi: the probability that a flow contains i packets.

cij : the probability of having j packets sampled, given the true flow length is i.

gj , j = 0, 1, ..., J : the frequency of sampled flows of length j.

SI = {i(0), i(1), ..., i(J)}, with i(j) denoting the length of a flow being i packets

when j of them have been sampled. In the initial setting, we choose i(0) = � 1
2p� and

i(j) = �j/p�.
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Adaptive EM Algorithm

(1) E-step:

Complete set of data: (fij , gj).

Frequency of flows of length i and with j packets sampled fij follows

Multinomial(M =
∑

i,j fij , pij).

Q(φ, φ(k)) =
∑

i≥j≥0

Eφ(k)(fij |gj , j = 1, 2, ..., J)log(φicij).

• j �= 0, Eφ(k)(fij |gj , j = 1, 2, ..., J) = gjpi|j,

• j = 0, nuisance parameter ĝ0
(k) =

∑
j>0 gjwj ,

where wj =
P

i φici0cijP
i φicij

.

Hence, Eφ(k)(fi0|gj , j = 1, 2, ..., J) = ĝ0
(k)pi|0
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(2) M-step:

φ(k+1) = arg maxQ(φ, φ(k)), s.t.
∑

i∈S
(k)
I

φi = 1, and φi(j) ≥ 0 for i ∈ S
(k)
I .

φ
(k+1)
i =

∑
i≥j≥1 gjpi|j + ĝ0

(k)pi|0∑
i∈S

(k)
I

(
∑

i≥j≥1 gjpi|j + ĝ0
(k)pi|0)

,

where pi|j is the conditional probability that for a flow of length i given j of its packets

have been sampled.
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(3) Adjusting Support Step

Given the estimated flow length distribution φ, the posterior probability distribution of a

flow being of length i given that j of its packets have been sampled

f(i|j) = cijφiP
i∈SI

cijφi
, j = 1, 2, ..., J

For any given sampled flow of length j, we provide an estimator of the original flow length

i(j), substituting the support S
(k)
I .

î(j) = E(i(j)) =
∑

i∈S
(k)
I

if(i|j). (3)

Iterate steps (1) - (3) until the convergence criterion is satisfied; i.e.

||φ(k+1) − φ(k)|| < δ.
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Estimation of Flow Size Distribution

We have already nonparametrically estimated flow length distribution F by φ, the next

main issue to estimate flow size distribution G is to estimate Q(B|N) according to

previous described general framework(1), where

Q(B|N) = P(
N∑

k=1

Z(k) = B|N).

Sample Point of View: Q(b|j) = P(
∑j

k=1 Z(k) = b|j).
Regression Model:

bj = γ0 + γ1j + ε, for all j;

B̂j = γ̂0 + γ̂1î(j)

B̂j gives support of flow size distribution SB.
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Mixture Distributions

Notice that both the packet length and size distribution are mixtures of two components;

the first, representing short flows, and the second representing considerably longer flows.
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Figure 1: Real Data flow lengths distribution in log-scale

Slide 14



Assume the original flow length distribution F (and consequently the flow size one G) is

a mixture of two components; i.e.

F = αF1 + (1 − α)F2,

with α ∈ (0, 1). To keep this simple, further assume F1 ≡ δ1.

We propose a Two-Stage EM Algorithm that deals with the problem of estimating mixture

distributions.
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Two-Stage EM Algorithm

• Adaptive EM Algorithm : estimate φ, SI and M .

• Another EM Algorithm based on the current estimates of these parameters : estimate

the mixing coefficient α.

Split the parameters of interest into two subsets (blocks) and in each iteration alternate

between the blocks by fixing the parameters of the other block in their current values.

Profile likelihood function for estimating α:

L(α) = (
M

g0, g1, ...gJ

)
∏

j≥0(fj)gj

∼ ∏
j≥0[αf(j|1) + (1 − α)f(j|S2

I )]gj ,

where S2
I is the support of the second component.
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Experimental Evaluation
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Figure 2: Quantile-quantile plot of the true vs the estimated flow length distribution for

1,000 Uniform flows with .05 sampling rate
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Figure 3: Dash lines are CDF Curves of the estimated flow length distribution for 100

Pareto flows with .05 sampling rate; solid line with ‘*’ is CDF Curve of the true flow length

distribution
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Figure 4: QQplot for true vs estimated flow size distribution from 100 pareto flows with

bytes per packet following normal(1350,100); Adaptive EM with sampling rate is p=0.05
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The experiment using simulated flow length data from the poisson distributions with mean

5000:
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Figure 5: Scatter plot of true vs estimated number of active flows in the link for Poisson

flows

Slide 20



A real network trace obtained from the router of the Abilene network at Denver in June of

2005. The trace covers a 5-minute period and contains 65,535 active flows. The average

flow length consists of 3 packets, but the variance takes a value of 430.
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Figure 6: Histograms of Flow

Lengths in log scale from NetFlow

data
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Figure 7: Estimated flow length dis-

tribution (in log-scale) of Abilene

trace using a 2-stage EM algorithm
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Semi-parametric Methods

Slow convergence for large data set → A faster alternative to capture the flow

characteristics of the first two moments. Application: Anomaly Detection.

Theoretically sample moments system:

μn = pμN , σ2
n = p(1 − p)μN + p2σ2

N ,

μb = μnμZ , σ2
b = σ2

Zμn + μ2
Zσ2

n,

cov(b, n) = μZσ2
n.

(μN , σ2
N ): the first two moments of the number of packets on the mth flow;

(μn, σ2
n): the first two moments of the number of packets sampled on the mth flow;

(μz, σ
2
z): the first two moments of bytes/packet on the mth flow;

(μB, σ2
B): the first two moments of total bytes on the mth flow.

(μb, σ
2
b ): the first two moments of total bytes observed on the mth flow.
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Method of Moment (MM)

Moment of flow lengths: μ̂
(MM)
N = μ̂n/p, σ̂

2(MM)
N = σ̂2

n−(1−p)μ̂n

p2

Moment of flow size:

μ̂
(MM)
B = μ̂

(MM)
Z μ̂

(MM)
N ,

σ̂
2(MM)
B = (σ̂2(MM)

Z + μ2
Z)(σ̂2(MM)

N + μ2
N ) − (μZμN )2,

where the independence between N and Z is assumed.

Moment Least Square (MLS)

The estimates are achieved by minimizing

L(μN , σ2
N , μZ , σ2

Z) = [μ̂n − pμN ]2 + [σ̂2
n − p(1 − p)μN + p2σ2

N ]2 + [μ̂b − μ̂nμZ ]2

+[σ̂2
b − σ2

Z μ̂n + μ2
Z σ̂2

n]2 + [ ˆcov(b, n) − μZ σ̂2
n]2
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Bias Correction

Bias:

• E(n) = pμN is estimated by μ̂n =
∑

m nm/r, an unbiased estimator of

E(n|n > 0) = pEN ( N
1−(1−p)N ).

• Similarly, σ2
n = p(1− p)μN + p2σ2

N is estimated by sample variance of all positive

sample lengths flows, which is essentially unbiased estimate of var(n|n > 0).

Solution:

• Estimating the total number of active flows M by M̂ = r
1−cµ̂N 0

, where μ̂N is from

the estimated average flow lengths without bias-correction.

• Next, μ̂n is updated by
∑

m nm/M̂ to accommodate the unobserved flows.

• Subsequently, MM or MLS can be applied with new μ̂n.

This gives a more robust estimate than original MM or MLS methods.
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Table 1: Empirical Result based on Lognormal Flow Length Distribution

mean(mN) mean(var(N)) CI(mN) mean(mN) mean(var(N)) CI(mN)

Real 500 50000 5000 5000000

Method of Moment 513.47 44870 46 5009 5.01E+06 95

Bias Correction 510.57 46095 59 5009 5.01E+06 95

mean(mean(B)) mean(vB) CI(mB) mean(mean(B)) mean(vB) CI(mB)

Real 3.79E+05 6.91E+10 3.83E+06 7.25E+12

Method of Moment 3.84E+05 6.46E+10 84 3.75E+06 6.65E+12 81

Bias Correction 3.82E+05 6.51E+10 85 3.75E+06 6.65E+12 81
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Conclusions

• The previous work was motivated by the problem of estimating the flow length and

size distributions from sampled data.

• A maximum likelihood non-parametric estimator for these quantities is proposed

based on Bernoulli sampling and their properties briefly discussed.

• Mixture distributions are considered which are prevalent in real network traffic traces.

A two-stage maximum likelihood estimator is proposed based on Bernoulli sampling.

• Fast Semi-parametric methods are discussed to accommodate online anomaly

detection.

• Experimental evidence suggests that the quality of the estimates is very good and

obviously improves for larger sampling rates.
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