Optimal Block Sequences for Blocked Fractional Factorial Split-plot Designs

Robert G. McLeod, University of Winnipeg

2007 Quality and Productivity Research Conference, Santa Fe, New Mexico

Outline

1. Basic Concepts of Screening Designs

- 2^{n-k} fractional factorial (FF) designs
- blocked 2^{n-k} designs (BFF designs)
- $2^{\left(n_{1}+n_{2}\right)-\left(k_{1}+k_{2}\right)}$ fractional factorial split-plot (FFSP) designs

Outline

1. Basic Concepts of Screening Designs

- 2^{n-k} fractional factorial (FF) designs
- blocked 2^{n-k} designs (BFF designs)
- $2^{\left(n_{1}+n_{2}\right)-\left(k_{1}+k_{2}\right)}$ fractional factorial split-plot (FFSP) designs

2. Optimal Block Sequences for Blocked Fractional Factorial Split-plot (BFFSP) Designs

- approaches to blocking; an example
- advantages of blocking
- block sequences
- optimality criteria
- a catalog of optimal block sequences for BFFSP designs

Outline

1. Basic Concepts of Screening Designs

- 2^{n-k} fractional factorial (FF) designs
- blocked 2^{n-k} designs (BFF designs)
- $2^{\left(n_{1}+n_{2}\right)-\left(k_{1}+k_{2}\right)}$ fractional factorial split-plot (FFSP) designs

2. Optimal Block Sequences for Blocked Fractional Factorial Split-plot (BFFSP) Designs

- approaches to blocking; an example
- advantages of blocking
- block sequences
- optimality criteria
- a catalog of optimal block sequences for BFFSP designs

3. Discussion and Future Research

- constructing non-regular BFFSP designs
- analysis of BFFSP designs with complex aliasing

1. Basic Concepts of Screening Designs

A 2^{7-2} Design

Generators \& Defining Contrast Subgroup (DCS):

$$
\begin{gathered}
F=A B C \quad G=A B D E \\
I=A B C F=A B D E G=C D E F G
\end{gathered}
$$

A 2^{7-2} Design

Generators \& Defining Contrast Subgroup (DCS):

$$
\begin{gathered}
\mathrm{F}=\mathrm{ABC} \quad \mathrm{G}=\mathrm{ABDE} \\
\mathrm{I}=\mathrm{ABCF}=\mathrm{ABDEG}=\mathrm{CDEFG}
\end{gathered}
$$

Word Length Pattern:

$$
W L P=\left(W_{3}, W_{4}, W_{5}, \ldots\right)
$$

$$
\text { Here, } W \text { LP }=(0,1,2)
$$

This design is the minimum aberration (MA) 2^{7-2} design (Fries \& Hunter, 1980).

Clear Effects

Definition:
A main effect or two-factor interaction is clear if it is not aliased with any main effects or two-factor interactions (or confounded with blocks).

Clear Effects

Definition:
A main effect or two-factor interaction is clear if it is not aliased with any main effects or two-factor interactions (or confounded with blocks).

DCS for the MA 2^{7-2} design:

$$
I=A B C F=A B D E G=C D E F G
$$

Clear Effects:

- for the 2^{7-2} design, all main effects and 15 two-factor interactions are clear
- in this example, the MA design also maximizes the number of clear effects; however, this is not always true

Outline

1. Basic Concepts of Screening Designs

- 2^{n-k} fractional factorial (FF) designs
- blocked 2^{n-k} designs (BFF designs)
- $2^{\left(n_{1}+n_{2}\right)-\left(k_{1}+k_{2}\right)}$ fractional factorial split-plot (FFSP) designs

2. Optimal Block Sequences for Blocked Fractional Factorial Split-plot (BFFSP) Designs

- approaches to blocking; an example
- advantages of blocking
- block sequences
- optimality criteria
- a catalog of optimal block sequences for BFFSP designs

3. Discussion and Future Research

- constructing non-regular BFFSP designs
- analysis of BFFSP designs with complex aliasing

A 2^{5-1} Design in 2 Blocks

Factor Generator:

$$
E=A B C
$$

Blocking Generator:

$$
\beta=A B D
$$

Defining Contrast Subgroup:

$$
I=A B C E=A B D \beta=C D E \beta
$$

Page 6 of 27

Go Back

Full Screen

$$
\text { A } 2^{5-1} \text { Design in } 2 \text { Blocks }
$$

Run	A	B	C	D	E	Block
1	-	-	-	-	-	1
2	+	+	-	-	-	1
3	-	-	+	-	+	1
4	+	+	+	-	+	1
5	+	-	-	+	+	1
6	-	+	-	+	+	1
7	+	-	+	+	-	1
8	-	+	+	+	-	1
9	+	-	-	-	+	2
10	-	+	-	-	+	2
11	+	-	+	-	-	2
12	-	+	+	-	-	2
13	-	-	-	+	-	2
14	+	+	-	+	-	2
15	-	-	+	+	+	2
16	+	+	+	+	+	2

Table 1: Standard Run Order of a 2^{5-1} Design.

Outline

1. Basic Concepts of Screening Designs

- 2^{n-k} fractional factorial (FF) designs
- blocked 2^{n-k} designs (BFF designs)
- $2^{\left(n_{1}+n_{2}\right)-\left(k_{1}+k_{2}\right)}$ fractional factorial split-plot (FFSP) designs

2. Optimal Block Sequences for Blocked Fractional Factorial Split-plot (BFFSP) Designs

- approaches to blocking; an example
- advantages of blocking
- block sequences
- optimality criteria
- a catalog of optimal block sequences for BFFSP designs

3. Discussion and Future Research

- constructing non-regular BFFSP designs
- analysis of BFFSP designs with complex aliasing

$$
\text { A } 2^{(3+3)-(0+1)} \text { FFSP Design }
$$

Hard-to-vary (whole-plot) factors; easy-to-vary (subplot) factors

A $2^{(3+3)-(0+1)}$ FFSP Design

Hard-to-vary (whole-plot) factors; easy-to-vary (subplot) factors
Suppose that an experimenter wishes to conduct a split-plot design having $\mathrm{n}_{1}=3$ whole-plot (WP) factors and $\mathrm{n}_{2}=3$ subplot (SP) factors but can only afford only 32 runs.

$$
\text { A } 2^{(3+3)-(0+1)} \text { FFSP Design }
$$

Hard-to-vary (whole-plot) factors; easy-to-vary (subplot) factors
Suppose that an experimenter wishes to conduct a split-plot design having $n_{1}=3$ whole-plot (WP) factors and $n_{2}=3$ subplot (SP) factors but can only afford only 32 runs.

44
The "best" 32-run FFSP design is obtained using the generator $\mathrm{r}=\mathrm{ABCpq}$.

$$
\text { A } 2^{(3+3)-(0+1)} \text { FFSP Design }
$$

Run	A	B	C	p	q	r
1	-	-	-	-	-	-
2				+	-	+
3				-	+	+
4				+	+	-
5	+	-	-	-	-	+
6				+	-	-
7				-	+	-
8				+	+	+
9	-	+	-	-	-	+
10				+	-	-
11				-	+	-
12				+	+	+
13	+	+	-	-	-	-
14				+	-	+
15				-	+	+
16				+	+	-
\vdots					\vdots	

Table 2: Standard run order of the $2^{(3+3)-(0+1)}$ FFSP design—first 16 runs.
2. Optimal Block Sequences for BFFSP Designs

A $2^{(3+3)-(0+1) \pm(1+1)}$ BFFSP Design

Factor Generator:

$$
\mathrm{r}=\mathrm{ABq}
$$

Blocking Generators:

$$
\begin{gathered}
\beta=A B C \quad \text { "a pure WP-blocking generator" } \\
\delta=A C p q \quad \text { "a separator" }
\end{gathered}
$$

Defining Contrast Subgroup:

$$
\begin{gathered}
I=A B q r=A B C \beta=A C p q \delta \\
=C q r \beta=B C p r \delta=B p q \beta \delta=A p r \beta \delta
\end{gathered}
$$

A $2^{(3+3)-(0+1) \pm(1+1)}$ BFFSP Design

Factor Generator:

$$
\mathrm{r}=\mathrm{ABq}
$$

Blocking Generators:

$$
\begin{gathered}
\beta=A B C \quad \text { "a pure WP-blocking generator" } \\
\delta=A C p q \quad \text { "a separator" }
\end{gathered}
$$

Defining Contrast Subgroup:

$$
\begin{gathered}
I=A B q r=A B C \beta=A C p q \delta \\
=C q r \beta=B C p r \delta=B p q \beta \delta=A p r \beta \delta
\end{gathered}
$$

Clear Effects:

- all main effects and 9 two-factor interactions are clear
- 6 two-factor interactions are not clear: AB, Aq, Ar, Bq, Br \& qr

This design is the MA BFFSP design, among all designs having 3 WP factors, 3 SP factors and a (4:4:2) "structure" (i.e., 4 blocks, 4 WP's per block and 2 SP's per WP); see McLeod \& Brewster (2004).

$$
\text { A } 2^{(3+3)-(0+1) \pm(1+1)} \text { BFFSP Design }
$$

Run	A	B	C	p	q	r	β	δ	Block
1	+	-	-	+	-	+	-	-	1
2				-	+	-	-	-	1
3	-	+	-	-	-	+	-	-	1
4				+	+	-	-	-	1
5	+	-	+	-	-	+	-	-	1
6				+	+	-	-	-	1
7	-	+	+	+	-	+	-	-	1
8				-	+	-	-	-	1
9	-	-	-	+	-	-	+	-	2
10				-	+	+	+	-	2
11	+	+	-	-	-	-	+	-	2
12				+	+	+	+	-	2
13	-	-	+	-	-	-	+	-	2
14			+	+	+	+	-	2	
15	+	+	+	+	-	-	+	-	2
16			-	+	+	+	-	2	
\vdots								\vdots	

Table 3: Standard run order of the $2^{(3+3)-(0+1) \pm(1+1)}$ BFFSP Design-first 16 runs.

Advantages of Blocking

An often overlooked advantage of blocked designs, in general, lies in the sequential nature in which they are run.

Advantages of Blocking

An often overlooked advantage of blocked designs, in general, lies in the sequential nature in which they are run.

Utilizing the sequential nature of the design. . .

- interim analysis
- early termination of the experiment
- more sophisticated design and analysis techniques
[Daniel (1962); Bisgaard (1994); McLeod and Brewster (2004); Jacroux (2006)]

Block Sequences

Recall the $2^{(3+3)-(0+1) \pm(1+1)}$ BFFSP design with blocking variable generators $\beta=A B C$ and $\delta=A C p q$.

Block Sequences

Recall the $2^{(3+3)-(0+1) \pm(1+1)}$ BFFSP design with blocking variable generators $\beta=A B C$ and $\delta=A C p q$.

Let $A B C="-"$ and $A C p q="-"$ denote those runs in the BFFSP design which produce a minus sign in the contrasts generating β and δ, respectively.

Block Sequences

Recall the $2^{(3+3)-(0+1) \pm(1+1)}$ BFFSP design with blocking variable generators $\beta=A B C$ and $\delta=A C p q$.

Let $A B C="-"$ and $A C p q="-"$ denote those runs in the BFFSP design which produce a minus sign in the contrasts generating β and δ, respectively.

Similarly, let ABC="+" and ACpq="+" denote those runs in the BFFSP design which produce a plus sign in the contrasts generating β and δ, respectively.

Block Sequences

	ABC β $(\operatorname{Cqr} \beta)$	ACpq $($ BCpr $\delta)$	Bpq $\beta \delta$ $($ Apr $\beta \delta)$
S $_{1}:$			
Block 1	-	-	+
Block 2	-	+	-
Block 3	+	+	+
Block 4	+	-	-

Table 4: One possible block sequence, S_{1}, for the MA $2^{(3+3)-(0+1) \pm(1+1)}$ BFFSP design.

Block Sequences

	ABC β $(\operatorname{Cqr} \beta)$	ACpq $($ BCpr $\delta)$	Bpq $\beta \delta$ $($ Apr $\beta \delta)$
S $_{1}:$			
Block 1	-	-	+
Block 2	-	+	-
Block 3	+	+	+
Block 4	+	-	-

Table 4: One possible block sequence, S_{1}, for the MA $2^{(3+3)-(0+1) \pm(1+1)}$ BFFSP design.

Recall the DCS:
$I=A B q r=A B C \beta=A C p q \delta=C q r \beta=B C p r \delta=B p q \beta \delta=A p r \beta \delta$

Block Sequences

	ABC β $(\operatorname{Cqr} \beta)$	ACpq $($ BCpr $\delta)$	Bpq $\beta \delta$ $($ Apr $\beta \delta)$
S $_{1}:$			
Block 1	-	-	+
Block 2	-	+	-
Block 3	+	+	+
Block 4	+	-	-

Table 4: One possible block sequence, S_{1}, for the MA $2^{(3+3)-(0+1) \pm(1+1)}$ BFFSP design.

Recall the DCS:
$\mathrm{I}=\mathrm{ABqr}=A B C \beta=A C p q \delta=\mathrm{Cqr} \beta=\mathrm{BCpr} \delta=\mathrm{Bpq} \beta \delta=A p r \beta \delta$
ABqr $\in \mathrm{G}_{\mathrm{t}}$

Block Sequences

	ABC β $(\operatorname{Cqr} \beta)$	ACpq $($ BCpr $\delta)$	Bpq $\beta \delta$ $($ Apr $\beta \delta)$
S $_{1}:$			
Block 1	-	-	+
Block 2	-	+	-
Block 3	+	+	+
Block 4	+	-	-

Table 4: One possible block sequence, S_{1}, for the MA $2^{(3+3)-(0+1) \pm(1+1)}$ BFFSP design.

Recall the DCS:
$\mathrm{I}=\mathrm{ABqr}=A \mathrm{BC} \beta=A \mathrm{Cpq} \delta=\mathrm{Cqr} \beta=\mathrm{BCpr} \delta=\mathrm{Bpq} \beta \delta=A p r \beta \delta$
$A B q r \in G_{t}$
$A B C \beta, A C p q \delta$ and $B p q \beta \delta \in G_{b}$

Block Sequences

	ABC β $(\operatorname{Cqr} \beta)$	ACpq $($ BCpr $\delta)$	Bpq $\beta \delta$ $($ Apr $\beta \delta)$
S $_{1}:$			
Block 1	-	-	+
Block 2	-	+	-
Block 3	+	+	+
Block 4	+	-	-

Table 4: One possible block sequence, S_{1}, for the MA $2^{(3+3)-(0+1) \pm(1+1)}$ BFFSP design.

Recall the DCS:
$\mathrm{I}=\mathrm{ABqr}=A B C \beta=A C p q \delta=\mathrm{Cqr} \beta=\mathrm{BCpr} \delta=\mathrm{Bpq} \beta \delta=A p r \beta \delta$
$A B q r \in G_{t}$
$A B C \beta, A C p q \delta$ and $B p q \beta \delta \in G_{b}$
$\mathrm{Cqr} \beta, \mathrm{BCpr} \delta$ and $A p r \beta \delta \in \mathrm{G}_{\mathrm{b} \times \mathrm{t}}$

Block Sequences

For a given BFFSP design there are $\left(2^{b_{1}+b_{2}}\right)$! possible block sequences.

Block Sequences

For a given BFFSP design there are $\left(2^{b_{1}+b_{2}}\right)$! possible block sequences.
For the $2^{(3+3)-(0+1) \pm(1+1)}$ BFFSP design this implies there are $\left(2^{1+1}\right)!=24$ block sequences.

Block Sequences

For a given BFFSP design there are $\left(2^{b_{1}+b_{2}}\right)$! possible block sequences.
For the $2^{(3+3)-(0+1) \pm(1+1)}$ BFFSP design this implies there are $\left(2^{1+1}\right)!=24$ block sequences.

	ABC $(\mathrm{Cqr} \beta)$	ACpq $(\mathrm{BCpr} \delta)$	Bpq $\beta \delta$ $(\mathrm{Apr} \beta \delta)$
$\mathrm{S}_{1}:$			
Block 1	-	-	+
Block 2	-	+	-
Block 3	+	+	+
Block 4	+	-	-
S $_{2}$:			
Block 1	-	-	+
Block 2	+	-	-
Block 3	-	+	-
Block 4	+	+	+

Table 5: A comparison of two block sequences for the MA $2^{(3+3)-(0+1) \pm(1+1)}$ BFFSP design.

Block Sequences

Question:

Why concern oneself with block sequences?

Block Sequences

Question:

Why concern oneself with block sequences?

Short answer:
From an estimation perspective, not all block sequences are "created equal"!

Block Sequences

Question:

Why concern oneself with block sequences?
Short answer:
From an estimation perspective, not all block sequences are "created equal"!

Longer answer:

The choice of block sequence may allow, or conversely impede, early estimation of low-order effects in $\mathrm{G}_{\mathrm{b} \times \mathrm{t}} \cup \mathrm{G}_{\mathrm{b}}$.

This realization is critical if one is interested in interim data analysis.. .

Block Sequences: A comparison of S_{1} and S_{2}

The two block sequences, S_{1} and S_{2}, are not equivalent with respect to the early estimation of low-order effects in $\mathrm{G}_{\mathrm{b} \times \mathrm{t}} \cup \mathrm{G}_{\mathrm{b}}$.

Block Sequences: A comparison of S_{1} and S_{2}

Home Page

Title Page
The two block sequences, S_{1} and S_{2}, are not equivalent with respect to the early estimation of low-order effects in $\mathrm{G}_{\mathrm{b} \times \mathrm{t}} \cup \mathrm{G}_{\mathrm{b}}$.

To see this, consider the sign of the contrasts $A B C$ and $C q r$ (both confounded with β) in S_{1} and S_{2}.

Block Sequences: A comparison of S_{1} and S_{2}

Home Page

Title Page

44
In S_{1} the sign of $A B C$ and $C q r$ remains constant ("-") thru blocks 1 and 2. the early estimation of low-order effects in $\mathrm{G}_{\mathrm{b} \times \mathrm{t}} \cup \mathrm{G}_{\mathrm{b}}$.

To see this, consider the sign of the contrasts $A B C$ and $C q r$ (both confounded with β) in S_{1} and S_{2}.

The two block sequences, S_{1} and S_{2}, are not equivalent with respect to

Go Back

Block Sequences: A comparison of S_{1} and S_{2}

The two block sequences, S_{1} and S_{2}, are not equivalent with respect to the early estimation of low-order effects in $\mathrm{G}_{\mathrm{b} \times \mathrm{t}} \cup \mathrm{G}_{\mathrm{b}}$.

To see this, consider the sign of the contrasts $A B C$ and $C q r$ (both confounded with β) in S_{1} and S_{2}.

In S_{1} the sign of $A B C$ and Cqr remains constant ("-") thru blocks 1 and 2.

Conversely, in S_{2} the sign of $A B C$ and $C q r$ switches between blocks 1 and 2.

Block Sequences: A comparison of S_{1} and S_{2}

Consequence:

After block 2, using S_{1} : Two SP main effects (q and r) and all three WP main effects are (completely) aliased with 2 fi 's after the second block has been completed.

Block Sequences: A comparison of S_{1} and S_{2}

Consequence:

After block 2, using S_{1} : Two SP main effects (q and r) and all three WP main effects are (completely) aliased with 2 fi's after the second block has been completed.

That is, after block 2, $\mathrm{q}=\mathrm{Cr}, \mathrm{r}=\mathrm{Cq}, \mathrm{A}=\mathrm{BC}, \mathrm{B}=\mathrm{AC}$ and $C=A B=q$.

Block Sequences: A comparison of S_{1} and S_{2}

Consequence:

After block 2, using S_{1} : Two SP main effects (q and r) and all three WP main effects are (completely) aliased with 2 fi 's after the second block has been completed.

That is, after block 2, $\mathrm{q}=\mathrm{Cr}, \mathrm{r}=\mathrm{Cq}, \mathrm{A}=\mathrm{BC}, \mathrm{B}=\mathrm{AC}$ and $C=A B=q$.

After block 2, using S_{2} : All main effects in $G_{b \times t} \cup G_{b}$ are clear. Furthermore, no 2fi's in $G_{b \times t} \cup G_{b}$ are aliased with main effects.

Block Sequences: A comparison of S_{1} and S_{2}

Consequence:

After block 2, using S_{1} : Two SP main effects (q and r) and all three WP main effects are (completely) aliased with 2 fi 's after the second block has been completed.

That is, after block 2, $\mathrm{q}=\mathrm{Cr}, \mathrm{r}=\mathrm{Cq}, \mathrm{A}=\mathrm{BC}, \mathrm{B}=\mathrm{AC}$ and $C=A B=q r$.

After block 2, using S_{2} : All main effects in $G_{b \times t} \cup G_{b}$ are clear. Furthermore, no 2fi's in $G_{b \times t} \cup G_{b}$ are aliased with main effects.

Using the hierarchical principle, S_{2} is preferred.

Block Sequences: A comparison of S_{1} and S_{2}

After block 4, using any S_{i} :

Home Page

Title Page
Note that after the runs in the final block (block 4) have been conducted, no low-order treatment effects in $G_{b \times t} \cup G_{b}$ will be aliased with one another.

Optimality Criteria

For a given BFFSP design, the idea is select a block sequence that allows the low-order effects in $G_{b \times t} \cup G_{b}$ to be clearly estimable as soon as possible.

Optimality Criteria

For a given BFFSP design, the idea is select a block sequence that allows the low-order effects in $G_{b \times t} \cup G_{b}$ to be clearly estimable as soon as possible.

All $\left(2^{b_{1}+b_{2}}\right)$! possible block sequences are evaluated according to the following sequential ranking scheme:

Optimality Criteria

For a given BFFSP design, the idea is select a block sequence that allows the low-order effects in $G_{b \times t} \cup G_{b}$ to be clearly estimable as soon as possible.

All $\left(2^{b_{1}+b_{2}}\right)$! possible block sequences are evaluated according to the following sequential ranking scheme:
a: the \# of SP me's that are aliased with other me's
b: the \# of WP me's that are aliased with other me's
c: the \# of SP me's that are aliased with 2 fi 's
d: the \# of WP me's that are aliased with 2 fi 's
Go Back
e : the \# of 2 fi's involving at least one $S P$ factor ($W P \times S P$ and $S P \times S P$) that are aliased with me's
f: the \# of WP \times WP 2 fi 's that are aliased with me's

A Catalog of Optimal Block Sequences

$$
\text { Example: An MA } 2^{(2+5)-(0+2) \pm(1+2)} \text { BFFSP design }
$$

A Catalog of Optimal Block Sequences

Example: An MA $2^{(2+5)-(0+2) \pm(1+2)}$ BFFSP design

An optimal block sequence for a 32-run BFFSP design run in 8 blocks of size 4 is as follows:

Design	Optimal Block Sequence	$\#$	a	b	c	d	e	f
2,$5 ; 0,2 ; 1,2$	$A B \beta_{1}(-,-,+,+,-,-,+,+)$	768	$0,0,0,0$	$2,0,0,0$	$5,4,4,0$	$2,1,1,0$	$16,16,6,0$	$0,0,0,0$
	$A p r \delta_{1}(-,-,-,-,+,+,+,+)$							
	$p q \delta_{2}(-,+,-,+,-,+,-,+)$							

3. Discussion and Future Research

Discussion and Future Research

- Analysis Issues

Discussion and Future Research

- Analysis Issues
- partial ("complex") aliasing
- simplification of complex aliasing via effect sparsity (Wu and Hamada (2000))
- Bayesian variable selection strategy (Hamada and Wu (1992); Chipman, Hamada, Wu (1997))
- in the split-plot setting? Ongoing work by D. Bingham

Discussion and Future Research

- Analysis Issues
- partial ("complex") aliasing
- simplification of complex aliasing via effect sparsity (Wu and Hamada (2000))
- Bayesian variable selection strategy (Hamada and Wu (1992); Chipman, Hamada, Wu (1997))
- in the split-plot setting? Ongoing work by D. Bingham
- Constructing Non-regular Blocked Split-plot Designs
- an indirect approach is possible using the optimal block sequence catalog
- 12 and 24-run designs

Optimal Block Sequences for Blocked Fractional Factorial Split-plot Designs

Robert G. McLeod, University of Winnipeg

2007 Quality and Productivity Research Conference, Santa Fe, New Mexico
Page 26 of 27

Go Back

Full Screen

Block Sequences: A general result

If a 3 fi , say $W_{1} W_{2} W_{3}$, is confounded with blocks (for e.g., $W_{1} W_{2} W_{3}=\beta$, etc.) then the main effects, W_{1}, W_{2} and W_{3} will be (completely or partially) aliased with the three 2 fi 's, $W_{2} W_{3}, W_{1} W_{3}$ and $W_{1} W_{2}$, respectively, after a given block, if an unequal number of " - " and " + " signs exist in the $W_{1} W_{2} W_{3}$ contrast.

Block Sequences: A general result

If a 3 fi , say $W_{1} W_{2} W_{3}$, is confounded with blocks (for e.g., $W_{1} W_{2} W_{3}=\beta$, etc.) then the main effects, W_{1}, W_{2} and W_{3} will be (completely or partially) aliased with the three 2 fi 's, $W_{2} W_{3}, W_{1} W_{3}$ and $W_{1} W_{2}$, respectively, after a given block, if an unequal number of " - " and " + " signs exist in the $W_{1} W_{2} W_{3}$ contrast.

| 44 | \square |
| :--- | :--- | :--- |

Similar results for contrasts of the form $W_{1} W_{2}$ and $W_{1} W_{2} W_{3} W_{4}$ confounded with blocks (i.e., in $\mathrm{G}_{\mathrm{b} \times \mathrm{t}} \cup \mathrm{G}_{\mathrm{b}}$).

