Quantification of length-bias in screening trials with covariate-dependent test sensitivity Dissertation Research

Sonya L. Heltshe, MS, Karen Kafadar, PhD

University of Colorado at Denver and Health Sciences Center

June 6^{th} , 2007

Outline

э

- 1. Length Bias/Inspection Paradox
- 2. Background: randomized screening trials
- 3. Length bias model in periodic screening
- 4. Results
- 5. Conclusion

1. Length Bias or Inspection Paradox

- Sampling bias
- Probability of being sampled is proportional to size
 - lengths of yarn
 - traffic
 - gas lines
 - warranty database
 - family size
 - residential sampling
 - disease screening
 - proteomics (mass spectrometry)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Length bias

Heltshe

Cluster size bias

Heltshe এন> এট> এট> এট> এট

Length Bias or Inspection Paradox

- Industrial data
 - sampled variable is estimated
 - string
 - warranty
 - protein
 - true size/length is observable
- Disease/health data
 - sampled variable is correlated to estimable variable (Y, Z)
 - Hospital data: sample Stay, estimate \$
 - Disease data: sample Pre-clinical, estimate Clinical duration

うめい は くはく よい くしゃ

Length Bias: Example

Heltshe

900

Sample hospital stays to estimate final bill (\$)

2. Randomized screening trials

- Screening mechanisms are used to detect disease early
- Participants are randomized to one of two arms

</

- Study Arm -offered periodic screening.
- Control Arm -standard medical care.
- Outcome of interest
 - disease specific mortality rates
 - extension of survival time

Randomized Screening Trials

• Disease progression model for unscreened and screen-detected cases if screening benefit exists

Unscreened Case:

| \leftarrow Preclinical Duration \rightarrow | \leftarrow Clinical Duration \rightarrow |

$\begin{array}{c|c} \mbox{Screen-detected case at X:} & & \\ & X & \\ & |LeadTime & | \leftarrow Clinical Duration \rightarrow | & Benefit| \\ | \leftarrow Preclinical Duration \longrightarrow & | \end{array}$

Randomized Screening Trials

- Survival since Dx in *unscreened* arm is an unbiased estimate of clinical duration
- Average lead time can be estimated using time since entrance into study
 - b/w arm difference in average survival time since entrance into study: Δ_{t0} = benefit
 - b/w arm difference in average survival time since Dx: $\Delta_{D_x} = \overline{lead} + \overline{benefit}$

•
$$\overline{lead} = \Delta_{D_x} - \Delta_{t_0}$$

Randomized Screening Trials

- Survival time since entry into the screened arm confounds average benefit time, and average length bias
- Length bias:
 - when the probability of selection is proportional to the size (length) of the variable being sampled
 - Zelen (1976) recognized this phenomenon in screening. "Cases found by screening tend to be less advanced... slower-growing disease"
 - of particular concern when pre-clinical duration is positively correlated with clinical duration

うめい は くはく よい くしゃ

Distribution of disease and detection in the two study arms

Control Arm

Screened Arm

3. Length bias in periodic screening

A. Single Sample

• (Y, Z) denote preclinical and clinical duration of disease in the diseased general population.

•
$$E(Y) = \mu_Y$$
, $E(Z) = \mu_Z$, $SD(Y) = \sigma_Y$, $SD(Z) = \sigma_Z$, k.

• (Y^{*}, Z^{*}) denote the same in the length-biased sample. Cox and Lewis (1972) show:

$$f_{Y^*}(y) = \frac{y}{\mu_Y} f_Y(y)$$

• Schotz & Zelen, 1971; Kafadar & Prorok, 2005

$$f_{Y^*,Z^*}(y,z) = \frac{y}{\mu_Y} f_{Y,Z}(y,z)$$

Length bias in periodic screening

- **B.** Successive Sampling
 - Goal: Estimate $E(Z^*)/E(Z)$:
 - Find density function of Y_k^* : $f_{Y_k^*}(y) = g_k(y)f_Y(y)$
 - Calculate $E(Y_k^*) = \int_0^\infty yg_k(y)f_Y(y)dy$.
 - Calculate expected sojourn time for screen-detected cases:

$$E(Y^*) = \sum_{k=1}^{K} \beta (1-\beta)^{k-1} E(Y^*_k)$$

Calculate E(Z*)/E(Z):

$$E(Z^*) = \sum_{k=1}^{K} \beta (1-\beta)^{k-1} E(g_k(Y)Z)$$

Heltshe ৩০০ ছা ব্≣াব্ছা ব্≣া

Length bias in periodic screening

Estimate $E(Z^*)/E(Z)$ under a number of conditions:

- Distribution of pre-clinical duration
 - exponential, gamma, lognormal, weibull
- Correlation between pre-clinical and clinical duration, ho
- Proportions of fast versus slow disease, ϕ
- moments of fast and slow disease $(\mu_{\phi}, \sigma_{\phi}^2, \mu_{(1-\phi)}, \sigma_{(1-\phi)}^2)$

- Ratio of time between screens, $\delta,$ and mean preclinical duration
- Variable test sensitivity: $\beta(y)$

Disease mixture scenarios:

- A: Fast ($\mu_Y = 1.5, \ \mu_Z = 2$) & Slow ($\mu_Y = 5, \ \mu_Z = 6$)
- **B:** Fast $(\mu_Y = 1, \mu_Z = 1.5)$ & Moderate $(\mu_Y = 3, \mu_Z = 2)$
- C: Moderate ($\mu_Y = 3, \ \mu_Z = 2$) & Slow ($\mu_Y = 7, \ \mu_Z = 9$)
- E: Very Fast ($\mu_Y = 0.5, \ \mu_Z = 0.5$) & Moderate ($\mu_Y = 3, \ \mu_Z = 2$)

Scenario A: delta = 3 beta = 0.7

Scenario B : delta = 3 beta = 0.7

Scenario C: delta = 3 beta = 0.7

V. Fast/Moderate

Scenario E: delta = 3 beta = 0.7

Scenario A

Fast/Slow

Fast/Moderate Beta lines

Scenario B

Moderate/Slow Beta lines

Scenario E

V.Fast/Moderate

0.5

phi

0.6

1.25

1.20

1.10

1.05

0.3

0.4

EZ*/EZ

Scenario C (5 periodic screens)

Moderate/Slow Delta lines

SY*/SY

V. Fast/Moderate Delta lines

Scenario E (5 periodic screens)

Variable Test Sensitivity

Heltshe

596

• Start with mixture of correlated lognormals:

$$f(y,z) = \phi \mathcal{LN}(y,z; \mu_Y = 1.5, \sigma_Y = 1, \mu_Z = 2, \sigma_Z = 1) + (1-\phi)\mathcal{LN}(y,z; \mu_Y = 5, \sigma_Y = 2, \mu_Z = 6, \sigma_Z = 2)$$

Example

Heltshe

- $\mathcal{LN}(y, z; \mu_Y = 1.5, \sigma_Y = 1, \mu_Z = 2, \sigma_Z = 1)$
- $\mathcal{LN}(y, z; \mu_Y = 5, \sigma_Y = 2, \mu_Z = 6, \sigma_Z = 2)$
- δ = 1.0, k = 4
- As ρ increases, so does $E(Z^*)/E(Z)$

ρ	β_{ϕ}	$\beta_{(1-\phi)}$	$\frac{E(Z^*)}{E(Z)}$	
0.70	.9	.9	1.10	
0.70	.7	.7	1.11	
0.70	.7	.9	1.12	
0.80	.9	.9	1.16	
0.80	.7	.7	1.19	
0.80	.7	.9	1.21	$\leftarrow -$

- Higher β decreases bias unless it's disproportionably higher for slow disease

5. Conclusion

Heltshe

- Incorporate variable test sensitivity eta(y)
- Quantify size-biased sampling under various conditions and distributions
- Determine most influential factors
 - distribution
 - ratio $\delta/E(Y)$
 - test sensitivity
 - correlation between Y and Z
 - ratio $E(Y)_{\phi}/E(Y)_{(1-\phi)}$
- Adjust survival time for length-bias
 - \rightarrow unbiased estimates of screening benefit