Choices for Alpha in a Split-Plot CCD

Scott Kowalski, Minitab Inc. Li Wang, Bristol-Myers Squibb
Geoff Vining, Virginia Tech

Central Composite Design

Common Choices for Alpha

- Cuboidal Region (Face Centered Cube)

$$
\alpha=1
$$

- Rotatable (Prediction Variance)

$$
\alpha=\sqrt[4]{F}
$$

- Orthogonal Blocking (Sequential Design)

$$
\alpha=\sqrt{\frac{F\left(2 k+n_{0 A}\right)}{2\left(F+n_{0 F}\right)}}
$$

Split-Plot CCD

- There are two types of factors
- Hard-to-change factors
- Easy-to-change factors
- There is now alpha and beta axial distances

WP	w_{1}	w_{2}	s_{1}	s_{2}	WP	w_{1}	w_{2}	s_{1}	s_{2}
1	-1	-1	-1	-1	6	a	0	0	0
	-1	-1	1	-1		a	0	0	0
	-1	-1	-1	1		α	0	0	0
	-1	-1	-1	1		a	0	0	0
2	1	-1	-1	-1	7	0	- α	0	0
	1	-1	1	-1		0	- α	0	0
	1	-1	-1	1		0	- α	0	0
	1	-1	-1	1		0	- α	0	0
3	-1	1	-1	-1	8	0	α	0	0
	-1	1	1	-1		0	α	0	0
	-1	1	-1	1		0	α	0	0
	-1	1	-1	1		0	a	0	0
4	1	1	-1	-1	9	0	0	- β	0
	1	1	1	-1		0	0	β	0
	1	1	-1	1		0	0	- β	0
	1	1	-1	1		0	0	β	0
5	- α	0	0	0	10	0	0	0	- β
	- α	0	0	0		0	0	0	β
	- α	0	0	0		0	0	0	- β
	- α	0	0	0		0	0	0	β

Cuboidal WP Design

- Using alpha=1 makes less settings for the hard-to-change factors
- Can be used to create minimum whole plot designs
- Beta is not constrained here

Rotatability

- Consider the model

$$
\mathbf{y}=\mathbf{X} \beta+\mathbf{M} \gamma+\varepsilon
$$

- Consider partitioning the design matrix as

$$
\mathbf{X}=\left[\begin{array}{ccccc}
\mathbf{1}_{1} & \mathbf{W}_{Q_{1}} & \mathbf{S}_{Q_{1}} & \mathbf{W}_{F_{1}} & \mathbf{S}_{F_{1}} \\
\mathbf{1}_{2} & \mathbf{W}_{Q_{2}} & \mathbf{S}_{Q_{2}} & \mathbf{W}_{F_{2}} & \mathbf{S}_{F_{2}} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\mathbf{1}_{m} & \mathbf{W}_{Q_{m}} & \mathbf{S}_{Q_{m}} & \mathbf{W}_{F_{m}} & \mathbf{S}_{F_{m}}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{W}^{*} & \mathbf{S}_{F}
\end{array}\right]
$$

- Then:

$$
\mathbf{X}^{\prime} \Sigma^{-1} \mathbf{X}=\left[\begin{array}{cc}
\frac{1}{\sigma^{2}+n \sigma_{\delta}^{2}}\left(\mathbf{W}^{\prime *} \mathbf{W}^{*}\right) & \mathbf{0} \\
\mathbf{0} & \frac{1}{\sigma^{2}}\left(\mathbf{S}_{F}^{\prime} \mathbf{S}_{F}\right)
\end{array}\right]
$$

Rotatability

- Let's look at the pure second-order moment for the $i^{\text {th }}$ subplot factor. A rotatable design would require

$$
[i i]_{s p}^{S_{F}}=[i i i]_{s p}^{W^{*}}
$$

However, there is a multiplier of $\frac{1}{\sigma^{2}}$ in S_{F} and $\frac{1}{\sigma^{2}+n \sigma_{s}^{2}}$ in W^{*}.

Unless $\sigma_{\delta}^{2}=0$, we cannot achieve exact rotatability.

Partial Rotatability

- We propose a concept of partial rotatability. It has similar properties, and it is more logical in the split-plot case.
- In a two-strata rotatable design, there are two axial distances instead of one. The whole plot axial distance, ρ_{w}^{2} and the second is the subplot axial distance, ρ_{s}^{2}
- A two-strata rotatable design will allow all the points with same ρ_{w}^{2} and ρ_{s}^{2} to have same prediction variance.

Partial Rotatability

- In a rotatable design, $\operatorname{Var}\left[\hat{y}\left(\mathbf{x}_{0}\right)\right]=f\left(\rho_{w}^{2}+\rho_{s}^{2}\right)$ which is a function of the overall distance.
- In a two-strata rotatable design, $\operatorname{Var}\left[\hat{y}\left(\mathbf{x}_{0}\right)\right]=f\left(\rho_{w}^{2}, \rho_{s}^{2}\right)$ a function of the two separate distances.
- Therefore, the stronger assumption in rotatable designs is being relaxed to accommodate the split-plot structure.

Partial Rotatability

We define the two-strata rotatable designs as:
In a k-factor split-plot design with k_{1} WP factors and k_{2} SP factors, let z_{i} be the $i^{\text {th }}$ WP factor and x_{j} be the $j^{\text {th }}$ SP factor. If for any two design runs
$\mathrm{t}_{0}=\left(\mathrm{z}_{10}, \mathrm{z}_{20}, \ldots, \mathrm{z}_{\mathrm{k} 1,0}, \mathrm{x}_{10}, \ldots, \mathrm{x}_{\mathrm{k} 2,0}\right)$ and $\mathrm{t}_{1}=\left(\mathrm{z}_{-11}, \mathrm{z}_{21}, \ldots, \mathrm{z}_{\mathrm{k} 1,1}, \mathrm{x}_{11}, \ldots, \mathrm{x}_{\mathrm{k} 2,1}\right)$ satisfying

$$
\sum_{i=1}^{k_{1}} z_{i 0}^{2}=\sum_{i=1}^{k_{1}} z_{i 1}^{2}=\rho_{W}^{2} \quad \text { and } \quad \sum_{j=1}^{k_{2}} x_{j 0}^{2}=\sum_{j=1}^{k_{2}} x_{j 1}^{2}=\rho_{S}^{2}
$$

the corresponding prediction variances $\operatorname{Var}\left[\hat{y}\left(t_{0}\right)\right]=\operatorname{Var}\left[\hat{y}\left(t_{1}\right)\right]$ are equal, the design is called a two-strata rotatable split-plot design.

Partial Rotatability

- The values of alpha and beta are

WP	w_{1}	w_{2}	s_{1}	s_{2}
9	0	0	- β	0
	0	0	β	0
	0	0	- β	0
	0	0	β	0
10	0	0	0	- β
	0	0	0	β
	0	0	0	- β
	0	0	0	β

$$
\begin{gathered}
\\
\alpha=\sqrt[4]{\frac{F}{n}} \text { and } \beta=\sqrt[4]{\frac{4 F}{n}}
\end{gathered}
$$

$$
\alpha=\sqrt[4]{\frac{F}{n}} \text { and } \beta=\sqrt[4]{\frac{2(1+n d) F}{n}}
$$

Partial Rotatability

- General conditions for these designs

- where $\mathrm{r}=$ \# alphas in a column and $\mathrm{a}=$ \# betas

Partial Rotatability

- What if we had a CRD?
- Then $\mathrm{d}=0, \mathrm{n}=1, \mathrm{r}=2, \mathrm{a}=2$

$$
\begin{gathered}
\alpha=\sqrt[4]{\frac{2 F}{r}}=\sqrt[4]{\mathrm{F}} \text { and } \beta=\sqrt[4]{\frac{2(1+n d) F}{a}}=\sqrt[4]{\mathrm{F}} \\
\alpha=\sqrt[4]{\frac{2 F}{r}}=\sqrt[4]{\mathrm{F}} \text { and } \beta=\sqrt[4]{\frac{2 F}{a}}=\sqrt[4]{\mathrm{F}}
\end{gathered}
$$

- So they all reduce to the CRD rotatable value

Partial Rotatability

- Conditions can be generalized to other combinations of HTC and ETC factors
- Unbalance in the WPs with axial runs can be handled, then there are subscripts on the n
- Only condition is $\mathbf{1}^{\prime} \mathbf{S}_{D_{i}}=\mathbf{0}^{\prime}$

Orthogonal Blocking

- Condition for Orthogonal Blocking:

For any column of X, the average in block i is the equal to the average in block j is equal to the overall average

- Khuri (1992) and Goos (2002) show that for an OB design, OLS=GLS for a balanced fixed block design

Orthogonal Blocking

- Extend this concept to SP-CCD
- Not going to show proof
- Block sizes do not have to be equal, but the whole plot sizes need to be equal

WP	w_{1}	w_{2}	s_{1}	S_{2}	WP	w_{1}	w_{2}	s_{1}	S_{2}
1	-1	-1	-1	-1	6	a	0	0	0
	-1	-1	1	-1		α	0	0	0
	-1	-1	-1	1		a	0	0	0
	-1	-1	-1	1		a	0	0	0
2	1	-1	-1	-1	7	0	- ${ }^{\text {a }}$	0	0
	1	-1	1	-1		0	- α	0	0
	1	-1	-1	1		0	- ${ }^{\text {a }}$	0	0
	1	-1	-1	1		0	- α	0	0
3	-1	1	-1	-1	8	0	a	0	0
	-1	1	1	-1		0	a	0	0
	-1	1	-1	1		0	a	0	0
	-1	1	-1	1		0	a	0	0
4	1	1	-1	-1	9	0	0	- β	0
	1	1	1	-1		0	0	β	0
	1	1	-1	1		0	0	0	- β
	1	1	-1	1		0	0	0	β
5	- α	0	0	0	10	0	0	0	0
	- α	0	0	0		0	0	0	0
	- α	0	0	0		0	0	0	0
	- α	0	0	0		0	0	0	0

Orthogonal Blocking

- Sequential Design will have WPs 1-4 in Block 1 and WPs 5-9 in Block 2
- For OB, trying to solve for the number of WP 10s to add into Blocks $1 \& 2$ as well as find the values for alpha and beta
- Only need to focus on quadratics

Orthogonal Blocking

- F = \# factorial points
- k_{1} = \# WP factors
- $\mathrm{k}_{2}=\#$ SP factors
- $\mathrm{n}_{\mathrm{c} 1}=\#$ overall center runs added to B1
- $\mathrm{n}_{\mathrm{c} 2}=$ \# overall center runs added to B2
- $r=\#$ alphas in a column

Orthogonal Blocking

$$
\begin{gathered}
\frac{F}{F+n_{c 1}}=\frac{r \alpha^{2}}{k_{1} r+k_{2} a+n_{c 2}}=\frac{r \alpha^{2}+F}{k_{1} r+k_{2} a+n_{c 2}+F+n_{c 1}} \\
\frac{F}{F+n_{c 1}}=\frac{a \beta^{2}}{k_{1} r+k_{2} a+n_{c 2}}=\frac{a \beta^{2}+F}{k_{1} r+k_{2} a+n_{c 2}+F+n_{c 1}} \\
\alpha^{2}=\frac{\left(k_{1} r+k_{2} a+n_{c 2}\right) F}{r\left(F+n_{c 1}\right)} \\
\beta^{2}=\frac{\left(k_{1} r+k_{2} a+n_{c 2}\right) F}{a\left(F+n_{c 1}\right)}
\end{gathered}
$$

Orthogonal Blocking

- There is a tradeoff between the size of the overall design, size of the blocks and reasonable values for alpha and beta
- With $\mathrm{n}_{\mathrm{c} 1}=8$ and $\mathrm{n}_{\mathrm{c} 2}=4$, our example yields:

$$
\alpha=1.414, \beta=2.828
$$

- With one replicate of the beta WP, gives

$$
\alpha=1.53, \beta=2.16
$$

Summary

- When conducting a CCD, the axial distance must be chosen
- In a SP-CCD, there are now two distances
- Simple solution is to use a distance of 1
- Cannot achieve the general definition of rotatability but can use partial rotatability
- OLS-GLS designs can be OB

