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Film Manufacturing Example

• Mixture-process experiment [Robinson, Myers, and 
Montgomery (2004)]

• Three components, (X1,X2, X3), melted and mixed in a 
screw extruder to produce a roll of film

• Pieces are cut from the roll and processed at a particular 
setting of the process variables, (P1,P2,P3)

• Response is a quality measure reflecting the amount of 
polarized light that passes through the film. 

• Reponse is distinctly non-normal and coefficient of 
variation is constant…assumed to be gamma distributed
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At each mixture, a 23-1 design is run in the process
variables.



The Model

1. Conditional Mean

Linear predictor written as

( ) *η = μ β δ= +X Z*g

2.  Random effects

Response follows a GLM family and to account
for correlation among subplot units (pieces of film)
a random effect defined for whole plot units (rolls)

( ) ( ) ( )| , |  E Var Vφδ μ δ μ= =y y

δis the vector of random effectsδ

The random effects in      assumed to have some
user-specified probability distribution

δ

( ) ( )1 * *ex. | i i ig expμ δ δ− = +x β



GLMMs and HGLMs

• GLMMs and HGLMs can be fit using R as well as SAS 
GLIMMIX 

• Inference primarily focuses upon the response mean and 
variance…model parameter estimates have 
asymptotically normal distributions and using Taylor 
series linearizations, inferential properties on the 
conditional and marginal means are derived [see 
Robinson et al (2004, 2006) and Lee and Nelder (1996)].

• Although the mean and variance are interesting, the 
engineer may have questions related to quantiles of the 
response distribution

Ex. Given a mixture-process setting, what percent of 
film pieces will yield responses greater than 150?

Ex. For a given mixture-process setting, 80% of the
product will exceed what amount?



Scenarios for interest in quantiles

• Scenario 1:  Assume an arbitrary mixture-process 
combination and that a single roll of film is produced 
with this combination. For a single roll of film, what 
percent of film pieces will exceed 150? (# film pieces 
arbitrarily large or small)

• Scenario 2: Same as above but assume the process yields 
an arbitrarily large number of rolls of film for the given 
mixture-process setting.  What percent of film pieces 
across the population of rolls will have film quality 
exceeding 150?

pieces

x1=0.35, x2=0.35, x3=0.30

p1=1, p2=-1, p3=-1



y is a quality measure of reflective light

( )~ ,y Gamma α θ

( )
150

f̂ y dy
∞

∫

Questions of interest need integration of estimated
response distribution

Q1:

Q2: ( )
0

ˆ 0.2
q

f y dy =∫

and α θNeed estimates of 

Recall for a Gamma, 

( ) ( )
ˆˆ   = ˆE y

E y
α αθθ= ⇒

Bayesian framework provides a forum for straight-
forward inference on integrals above



Bayesian Inference Framework

Bayesian approach combines prior information on the 
model parameters[                              ] with the information
that the data provides about the model parameters

( )' ' *', , , δα σΘ β= δ

The posterior distribution combines the information in
and              using Bayes’ Theorem( )π Θ ( )|f Θy

Information on the parameters from the data is captured
by the likelihood                , which is the product of 
gamma pdf’s

( )|f Θy

( ) ( )' *'| exp
i

i
i i roll

E y
α αθ

δΘ β
= =

+x

The prior information on the model parameters described by
the prior probability density            which is the product
of pdfs for each of the parameters in   

( )π Θ
Θ



Model   {  
  

For(i in 1:52) {  
y[i] ~dgamma(alpha,theta[i]) 
theta[i]<-alpha/mu[i] 
mu[i]<-exp( 
beta[1]*x1[i]+beta[2]*x2[i]+beta[3]*x3[i]+ 
...+ delta[roll[i]]) 
 

}  
 

for (j in 1:13) {  
delta[j]~dnorm(0,taudelta) #taudelta is a 
whole plot precision    

}  
#priors  

taudelta ~ 
dgamma(0.001,0.001) 

 

sigmadelta<- 1 /sqrt( 
taudelta)

 

 
for(k in 1:13){  

beta[k]~ dnorm(0.0,1.0E-6)   
}  

 
alpha<-1/ralpha  

ralpha~dgamma(0.001,0.001)
I(0.01,100)

 

}  
 

( )|f Θy

( )π Θ

WinBUGS Code



WinBUGs Output

After allowing for a burn-in period of 4000 MCMC
draws, 100,000 draws requested and then a thinning 
in which every 10th draw selected

The remaining 10,000 draws for the parameters in
estimates the posterior distribution of the parameters

in 
Θ
Θ

To summarize the posteriors of each of the parameters,
the sample means and standard deviations of each of the 
respective posteriors was used

For this data set, the Bayesian analysis is comparable to
the GLMM analysis using PQL from SAS Proc GLIMMIX



Comparing GLMM and WinBUGs Output

Regression coefficients and uncertainty:

 Bayesian Analysis GLMM PQL Analysis 

Effect Estimate Standard 
Dev. Estimate Standard 

Error 
x1 6.146 0.408 6.113 0.371 
x2 4.022 0.407 3.984 0.386 
x3 1.332 0.878 1.234 0.805 

x1*x2 10.51 2.472 10.727 2.323 
p1 -0.697 0.584 -0.688 0.499 
p2 0.272 0.533 0.366 0.499 
p3 0.224 0.597 0.305 0.499 

x1*p1 1.19 0.827 1.189 0.697 
x2*p1 1.981 0.820 1.962 0.713 
x1*p2 -0.098 0.753 -0.224 0.697 
x2*p2 -0.897 0.758 -1.031 0.713 
x1*p3 -0.380 0.840 -0.490 0.697 
x2*p3 -0.036 0.843 -0.145 0.713 

 



 Bayesian Analysis GLMM PQL Analysis 

Effect Estimate Standard 
Dev. Estimate Standard 

Error 
α  4.2580 1.1300 4.7214 1.2190 

1δ  0.0174 0.2442 0.0408 0.2410 
2δ  0.0710 0.2209 0.1298 0.2165 
3δ  0.1350 0.2352 0.2299 0.2179 
4δ  0.0663 0.2124 0.1273 0.2165 
5δ  -0.2095 0.2648 -0.3346 0.2117 
6δ  -0.0108 0.2087 -0.0268 0.2165 
7δ  0.0806 0.2169 0.1540 0.2165 
8δ  0.1526 0.2370 0.2606 0.2117 
9δ  -0.0205 0.2443 -0.0408 0.2410 

10δ  -0.1953 0.2564 -0.3290 0.2165 
11δ  0.0347 0.2165 0.0715 0.2179 
12δ  -0.0286 0.2082 -0.0553 0.2165 
13δ  -0.1298 0.2303 -0.2274 0.2117 
2
δσ  0.0572 0.1098 0.0837 0.0659 

 

Gamma shape parameter, random effects, and variance
of random effects



Uncertainty

• Scenario 1:  Assume an arbitrary mixture-process 
combination and that a single roll of film is produced 
with this combination.  Also assume an arbitrarily large 
number of pieces of film come from a single roll.  For a 
single roll of film, what percent of film pieces will 
exceed 150?

pieces

x1=0.35, x2=0.35, x3=0.30

p1=1, p2=-1, p3=-1

For this scenario, we are concerned with the distributional
properties of film pieces within a given roll

Overall uncertainty is a function of parameter uncertainty
from the estimation of model parameters as well as the
random effect associated with the specific roll



Recall that our response is assumed gamma with parameters
 and α θ

The linear predictor is given by

η δβ= +x' *

3 3 2 3

12 1 2
1 1 1 1

j j k k jk j k
j k j k

x x x p x pβ β γ ψβ
= = = =

= + + +∑ ∑ ∑∑x' *

For a log link, conditional mean response is then

( ) ( ) ( )1E y g expδ η η−= =|

We have posteriors for each of model parameters and
thus for the linear predictor η

α
A separate gamma density then exists for each MCMC
draw since each draw provides a value of      as well as a
value of  ( )exp

αθ η=



Recall that our goal is to provide inference on the proportion
of film pieces, for a given roll, that will yield responses
greater than 150

( )
150

f̂ y dy
∞

∫

The integral is easily obtained using a cdf command in a
software package since the quanities needed for the cdf
command are the response value of interest (150) and the
values of  and α θ

Recall that each MCMC draw provides a realization of 
and by doing the integration for each draw, one

has the posterior distribution of the quantity of interest
 and α θ

Note that point estimates of                  can also be easily
found using a PQL analysis of the GLMM from Proc
GLIMMIX…however the uncertainty associated with this
estimate would be challenging to derive 

and α θ



Credible interval obtained using the 2.5% and 
97.5% quantiles of the posterior

Posterior distribution of ( )150 |P y δ>

point estimate:  0.858

95% C.I.:   (0.598,0.973)

Expected proportion > 1
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• Scenario 2: Same as before but assume the process yields 
an arbitrarily large number of rolls of film for the given 
mixture-process setting.  

x1=0.35, x2=0.35, x3=0.30

p1=1, p2=-1, p3=-1

Assume these settings are
optimal and many rolls 
produced at these settings

In previous setting, linear predictor given by

η δβ= +x' *

Now, linear predictor given by

popη ξβ= +x' * ( )2~ 0,N δξ σ



represents the uncertainty associated with a given 
roll whereas the uncertainty across a population of rolls
is what is taken into account by a randomly generated 
value of 

δ

( )2~ 0,N δξ σ

The Bayesian analysis provides the posterior distribution
of        and thus, for each MCMC draw, a value of the linear
predictor                         is tabulated

δσ
popη ξβ= +x' *

The mean of the gamma density is now the mean across
a population of rolls or 

( )pop popE expξμ η⎡ ⎤= ⎣ ⎦

To estimate       , a large number of values of      are
generated and subsequently,                 is calculated and
an arithmetic mean is taken 

popμ ξ
( )popexp η

For each MCMC draw, one then has                    and      ˆˆ
ˆpop

pop

αθ μ= α̂



Recall that our goal is to provide inference on the proportion
of film pieces, across a population of rolls, that will yield 
responses greater than 150

( )
150

f̂ y dy
∞

∫

Note that this is the same as what was done in scenario 1
except that we now use the gamma density with the 
marginal mean instead of the conditional mean

Credible interval obtained using the 2.5% and 
97.5% quantiles of the posterior

point estimate:  0.842

95% C.I.:   (0.258,0.994)
popμ

point estimate:  0.858

95% C.I.:   (0.598,0.973)

|μ δ



Conclusions

• For non-normal response split-plots, GLMMs and 
HGLMs are standard fare for analyses…these analyses 
focus primarily upon the mean

• When interest is on other characteristics of the response 
(specific quantiles, proportion within specifications, etc.), 
inferences using GLMM or HGLM theory may require 
many levels of approximations or boot-strapping

• Bayesian modeling framework easily allows for 
inferences on response quantiles by working with the 
posterior distributions

• Application of the Bayesian modeling framework to 
robust design is also natural and demonstrated in 
Robinson, Anderson-Cook and Hamada (2007)


