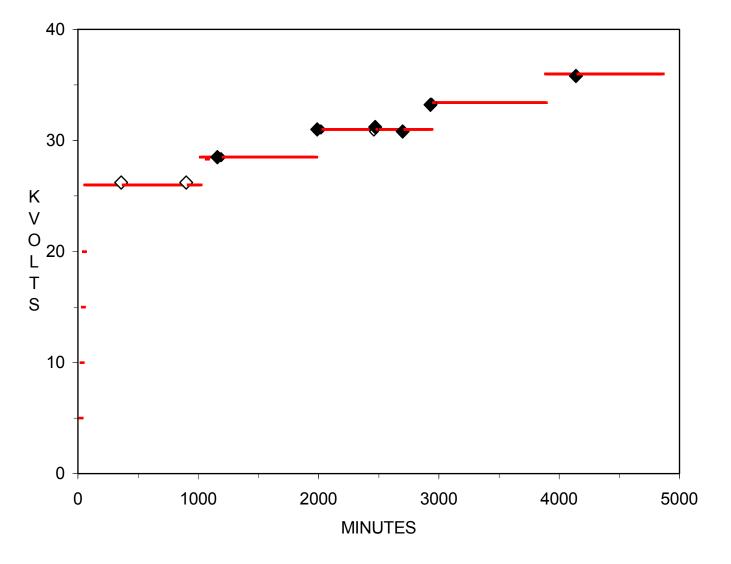
# RESIDUALS AND THEIR ANALYSES FOR ACCELERATED LIFE TESTS WITH STEP OR VARYING STRESS

Wayne Nelson, consultant, Schenectady, NY WNconsult@aol.com, (518) 346-5138

PURPOSE: Define and plot suitable residuals to evaluate the model and data.

#### **OVERVIEW**


- STEP-STRESS TEST
- DATA
- CONSTANT-STRESS MODEL
- CUMULATIVE EXPOSURE/DAMAGE MODEL
- MAXIMUM LIKELIHOOD FIT
- RESIDUAL DEFINITION
- PLOTS OF RESIDUALS
- CONCLUDING REMARKS

## **STEP-STRESS TEST**

| Step:         | 1   | 2    | 3     | 4      | 5      | 6      | 7     | 8    | 9    | 10   | ••• |
|---------------|-----|------|-------|--------|--------|--------|-------|------|------|------|-----|
| KVolts:       | 5.0 | 10.0 | 15.0  | 20.0   | 26.0   | 28.5   | 31.0  | 33.4 | 36.0 | 38.5 | ••• |
| Hold:<br>Min. | 10  | 10   | 10    | 10     | Δ      | Δ      | Δ     | Δ    | Δ    | Δ    | ••• |
| where         | Δ = | 15,  | 60, 2 | 240, d | or 960 | ) minu | ites. |      |      |      |     |

Estimate the life dist. at 400 V/mil, the 1% point  $t_1(400)$ .

#### **STEP-STRESS AND DATA** • failed, $\diamond$ censored



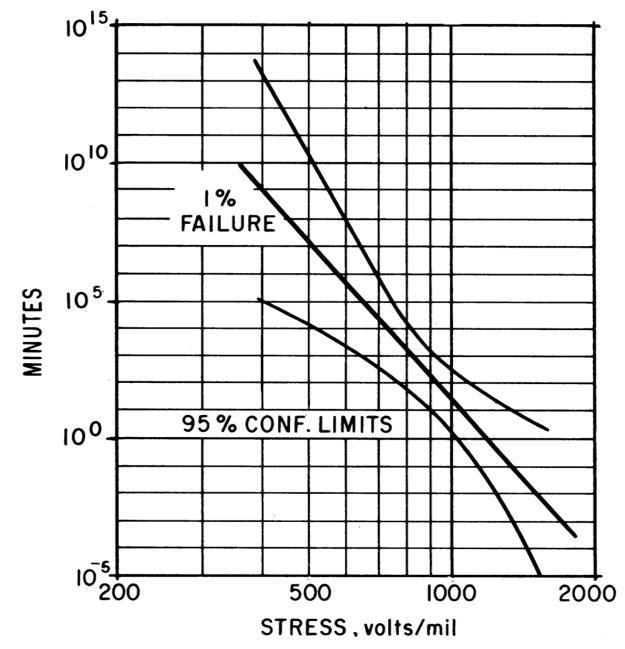
#### CRYOGENIC CABLE INSULATION DATA

| Spec- | Thick | Hold   | Failure | Time    | Residual |  |
|-------|-------|--------|---------|---------|----------|--|
| imen  | mils  | (min.) | Step    | (min.)  | Residual |  |
|       |       |        |         |         |          |  |
| 1     | 27    | 15     | 9       | 102     | 0.136    |  |
| 2     | 27    | 15     | 9       | 113     | 0.373    |  |
| 3     | 27    | 15     | 9       | 113     | 0.373    |  |
| 4     | 29.5  | 60     | 10      | 370+    | 0.706+   |  |
| 5     | 29.5  | 60     | 10      | 345+    | 0.355+   |  |
| 6     | 28    | 60     | 10      | 345     | 1.00     |  |
| 7     | 29    | 240    | 10      | 1333    | 3.44     |  |
| 8     | 29    | 240    | 10      | 1249    | 1.78     |  |
| 9     | 29    | 240    | 10      | 1333+   | 3.44+    |  |
| 10    | 29    | 240    | 9       | 1106.4  | 0.907    |  |
| 11    | 30    | 240    | 10      | 1250.8  | 0.922    |  |
| 12    | 29    | 240    | 9       | 1097.9  | 0.863    |  |
| 13    | 30    | 960    | 7       | 2460.9+ | 0.0947+  |  |
| 14    | 30    | 960    | 7       | 2460.9  | 0.0947   |  |
| 15    | 30    | 960    | 7       | 2703.4  | 0.127    |  |
| 16    | 30    | 960    | 8       | 2923.9  | 0.158    |  |
| 17    | 30    | 960    | 6       | 1160.0  | 0.00784  |  |
| 18    | 30    | 960    | 7       | 1962.9  | 0.0282   |  |
| 19    | 30    | 960    | 5       | 363.9+  | 0.00130+ |  |
| 20    | 30    | 960    | 5       | 898.4+  | 0.00344+ |  |
| 21    | 30    | 960    | 9       | 4142.1  | 1.41     |  |

CONSTANT-STRESS MODEL (POWER-WEIBULL)

$$F(t) = 1 - \exp\{-[t(V/V_0)^p]^\beta\}$$

where V is the voltage stress (voltage/thickness),


 $\beta$  Is the Weibull shape parameter (to be estimated),

 $\alpha(V) = (V_0/V)^p$  is the Weibull scale parameter,

and p and  $V_0$  are parameters to be estimated.

The *F*-th percentile at constant stress *V'* is  $t_F(V') = -(V_0/V')^p \{ \ln[1-(F/100)] \}^{1/\beta}.$ 

**INVERSE POWER RELATIONSHIP** 



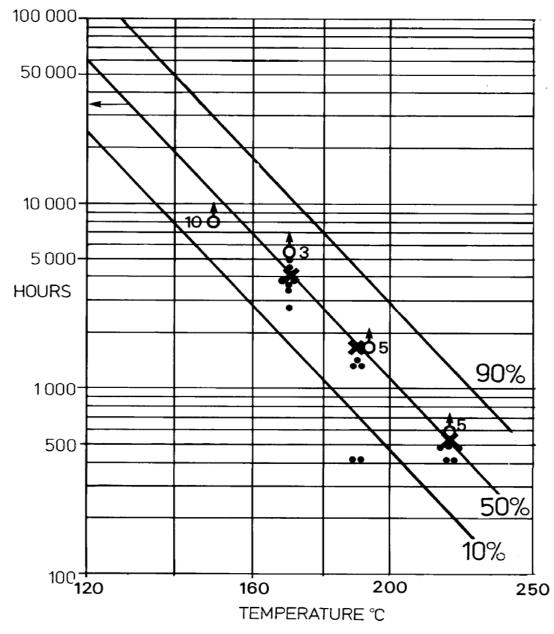
## CUMULATIVE DAMAGE/EXPOSURE MODEL

Under a time-varying stress V(t), the population distribution of time t to failure is

$$F[t;V(t)] = 1 - \exp\{-[\varepsilon(t)]^{\beta}\}\$$

where the *cumulative exposure* is

$$\varepsilon(t) \equiv \int_0^t dt / \alpha[V(t);V_0,p].$$


ε(t) has a Weibull distr. with shape β and α = 1. For steps  $(V_i, τ_i)$ ,  $τ_{I-1} < t ≤ τ_I$  and where  $α_i = (V_0/V_i)^p$ ,  $ε(t) = [(τ_1-0)/α_1] + [(τ_2-τ_1)/α_2] + ... + [(t-τ_{i-1})/α_I].$ 

### MAXIMUM LIKELIHOOD FIT

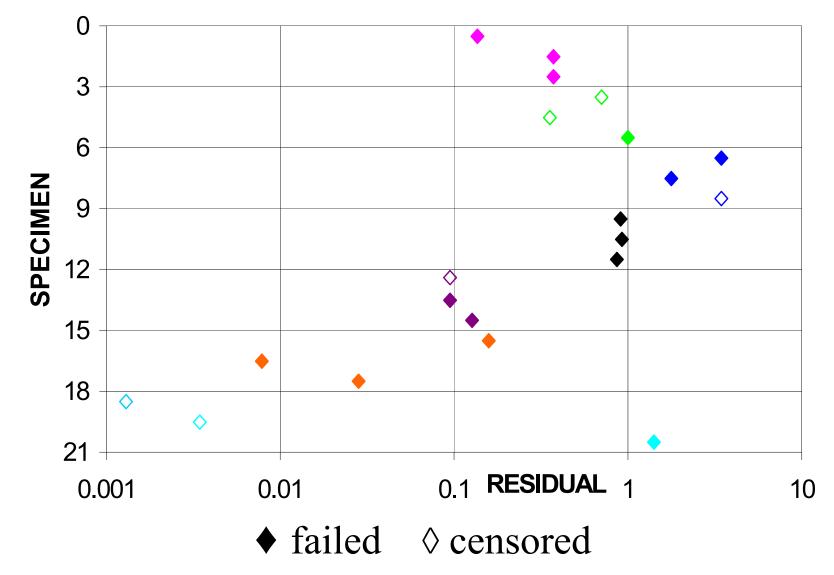
Estimates and 95% limits (normal approx. and LR)

 $\beta^* = 0.756 \quad (0.18, 1.33) \quad (0.27, 1.39)$   $p^* = 19.9 \quad (6.2, 33.7) \quad (11.0, 47.2)$   $V_0^* = 1616 \quad (1291, 1941)$  $t_1^*(400) = 2.8 \times 10^9 \quad (2.65 \times 10^4, 2.98 \times 10^{14})$ 

#### **CONSTANT-STRESS RESIDUALS**

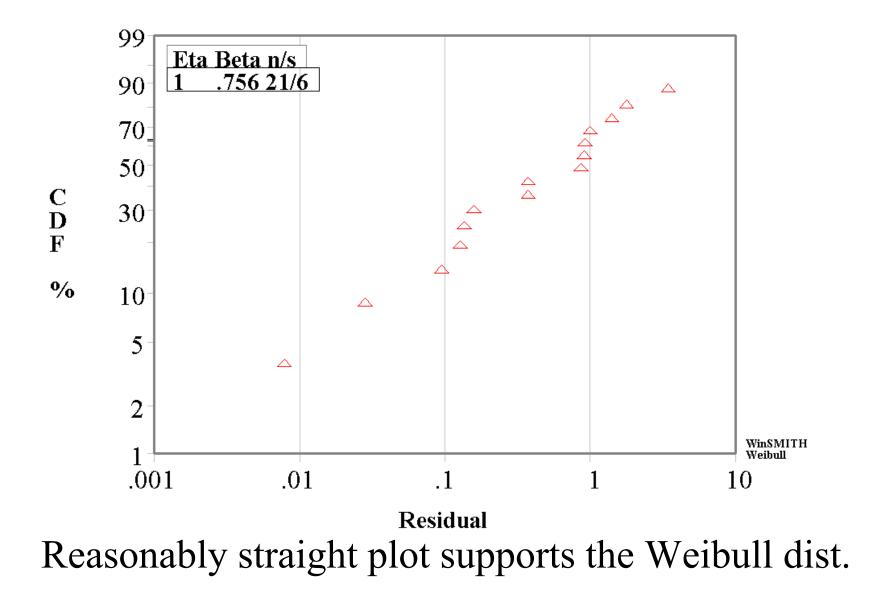


## **RESIDUAL DEFINITION FOR VARYING STRESS**

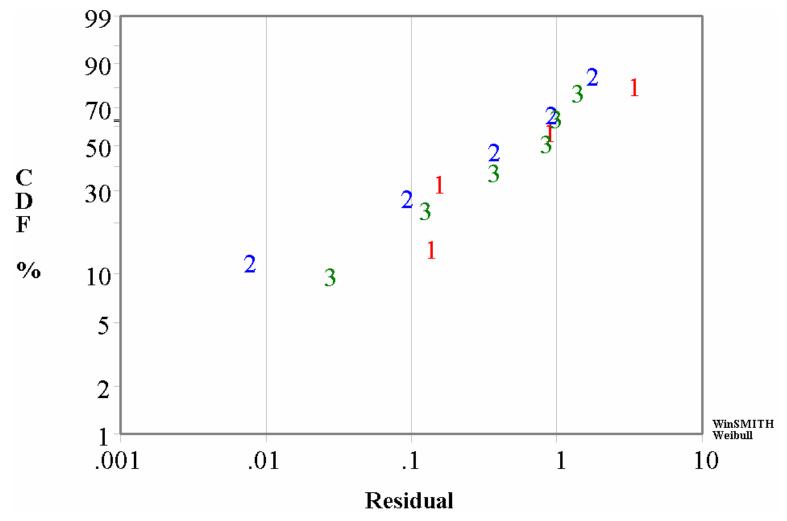

For a failure or censoring time  $t_i$ , the corresponding observed or censored *residual* is the cumulative exposure

$$e_i \equiv \varepsilon^*(t_i) \equiv \int_0^t dt / \alpha[V(t); V_0^*, p^*]$$

When the constant-stress and cumulative exposure models are correct, these residuals have a Weibull distribution with shape  $\beta$  and  $\alpha = 1$ .

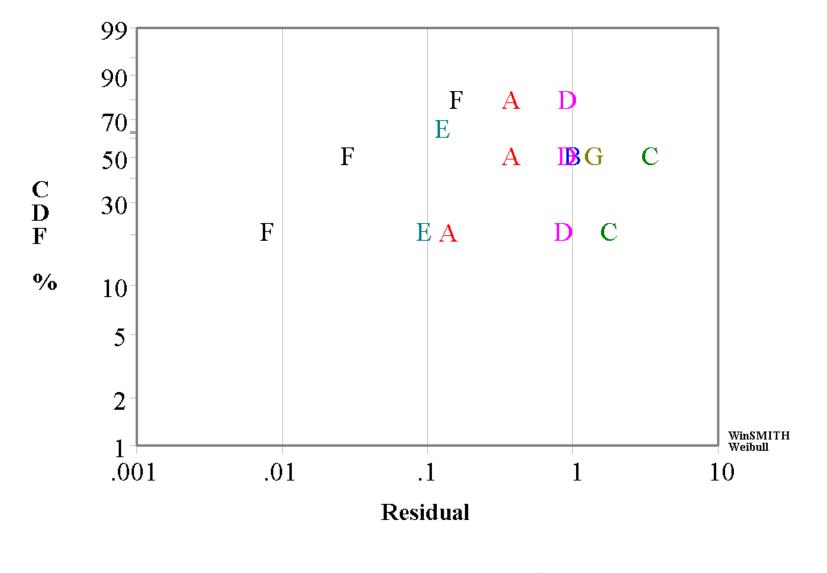

They can be plotted to assess the validity of the model and data.

**RESIDUALS VERSUS SPECIMEN NUMBER** 




This plot suggests that groups of three specimens differ.

WEIBULL PLOT OF POOLED RESIDUALS




WEIBULL PLOT FOR TEST POSITIONS 1, 2, 3



Reasonably straight plots support a Weibull distribution. Superimposed plots indicate <u>no position effect</u>.

#### WEIBULL PLOT FOR SEVEN GROUPS A, B, ..., G



<u>Clear group effect</u>. Within group  $\beta^* \cong 2.5$ , higher. Cause?

## **CONCLUDING REMARKS**

- The plots are informative.
- They should be supplemented by analytic methods.
- The residuals and plots extend to
- other distributions (e.g., lognormal) and other relationships where the scale parameter is a function of stress and all other parameters are not,
- K stresses  $V_1(t)$ , ...,  $V_K(t)$ ,

- field data where each unit has a different stress history.

## REFERENCES

Fulton, Wes (2002), "WinSMITH<sup>TM</sup> Weibull Software," www.WeibullNews.com.

Nelson, Wayne (1973), "Analysis of Residuals from Censored Data," *Technometrics* **15**, 697-715.

--- (1990), Accelerated Testing: Statistical Model, Test Plans, and Data Analyses, Wiley, New York.

 -- (2007), "Residuals and Their Analyses for Accelerated Life Tests with Step or Varying Stress," to appear in *IEEE Trans. on Reliability*.