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Profile monitoring is an approach in quality control best used where the process data follow a
profile (or curve). The majority of previous studies in profile monitoring focused on the
parametric modeling of either linear or nonlinear profiles, with both fixed and random-effects,
under the assumption of correct model specification. In many practical situations, the user has
some knowledge of the nonlinear parametric form for a particular profile model. However, this
model may be misspecified over a portion of the data or the relationship is too complicated to
be described parametrically. Therefore, we propose two alternative approaches for nonlinear
profile model, a nonparametric (NP) method and a semiparametric procedure that combines
both parametric (P) and NP profile fits. We refer to our semiparametric procedure as nonlinear
mixed robust profile monitoring (NMRPM). These two methods can account for the
autocorrelation within profiles and treat the collection of profiles as a random sample from a
common population. We adopt the usual Hotelling's (T chart to check the unusual profiles.
Simulation results show that our NP and NMRPM methods perform well in terms of providing
adequate fits to the nonlinear profiles and in making decisions regarding outlying profiles when
compared to a misspecified nonlinear mixed parametric model. In addition, however, the
NMRPM method is robust to model misspecification because it also performs well when
compared to a correctly specified nonlinear mixed parametric model. The proposed charts have
good abilities to detect changes in Phase | data. We illustrate the proposed nonlinear mixed
profile monitoring methods for two real applications, a bioassay dataset from DuPont Crop
Protection and the vertical density profiles of particle boards.
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We consider a process producing count type data from a Poisson distribution. The Poisson
parameter (mean and variance) can experience jumps at random times. These jumps can be of
either direction, i.e. either upward (causing worst process performance) or downward (process
improvement) and of random size. Our interest is in detecting in an on-line fashion when the
parameter exceeds certain prespecified thresholds. The methodology is based on a Bayesian
sequentially updated scheme of mixture of Gamma distributions. Issues regarding inference
and prediction will be mentioned. The developed methodology is very appealing for Phase |
and/or short run count data.
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A statistical process control (SPC) chart using the generalized likelihood ratio (GLR) statistic to
monitor the mean vector of a multivariate normal (MN) process is discussed and its
performance is evaluated. Performance comparisons to the Hotelling x2 chart, multivariate
exponentially weighted moving average (MEWMA) chart and the multi- MEWMA combination
are carried out through computer simulations. Results show that the Hotelling x2 chart and the
MEWMA chart are only effective for a small range of shift sizes in the mean vector, while the
GLR chart and some carefully designed multi-MEWMA combinations can give similarly better
overall performance in detecting a wide range of shift magnitudes. Unlike most of these other
options, the GLR chart does not require specification of tuning parameter value from the user.
The GLR chart also has the advantage in process diagnostic: at the time of a signal, estimates of
change-point and out-of-control mean vector are immediately available to the user. All these
advantages of the GLR chart make it a favorable option for practitioners. For the design of the
GLR chart, a series of easy to use equations are provided to users for calculating the
approximated control limit to achieve any desired false alarm rate.
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Existing guides to express uncertainty in measurement partition errors into “random” and
“systematic” components, and classify uncertainty evaluation options into “type A” and “type
B.” Type A evaluation uses observed data, while Type B evaluation uses other methods
including expert judgment and assumed probability densities. Within the nuclear safeguards
community, some nondestructive assay (NDA) methods invoke assumptions relating the source,
intervening material, and detector response to the observed data (a “forward” model) in a
manner that can result in “item-specific” bias. Some of the concepts recommended in existing
guides such as the ISO GUM (guide to the expression of uncertainty in measurement) still apply.
For example, the GUM describes error propagation in explicit algebraic forms relating
observed/measured input quantities xi, X, .., X, to an estimate of the true value (measurand) y
and also describes converting coverage intervals and assumed underlying probability
distributions to error standard deviations. However, additional concepts are needed for NDA,
perhaps in the form of a GUM+. We give two examples that give rise to the need for a GUM+.
First, errors in predictors can require treatment using approaches that are more widely known
in the statistics community. Second, uncertainty in the forward model relating source/
sample/detector to observed data should not be ignored.

Two Goodness-of-Fit Tests for Generalized Linear Mixed Models
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Generalized Linear Mixed Models (GLMMs) are extremely useful for modeling dependence
among response variables inherent in longitudinal or repeated measures studies. However,
using a misspecified GLMM can lead to poor statistical inference. We propose two candidate
goodness-of-fit tests for the response distribution of a GLMM. The first is an extension to



GLMMs of the well known Chi-Square goodness-of-fit test. The second is based on a Cramer-
von-Mises empirical distribution test. Power and size studies will be provided. We will attempt
to fit a multinomial logistic model to a complex imaging dataset which aims to predict the
progression of Alzheimer's disease among older adults. We will evaluate various GLMMs with
these goodness-of-fit techniques.

Handy Sample Size Shortcuts for an Upper Confidence Bound on a Defect Rate
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We are often asked to provide a sample size to put an upper confidence bound on a defect
rate. For example, “What sample size n must be free of defectives to be 95% confident the
true defect rate is less than ‘1 in 10000’?”. More generally, “How many n should be sampled
and be free of defectives to be c% confident that the true defect rate is less and ‘1 in r'?” You
may already know about the “rule of 3” for the 95% example, but it can be shown that there is
a constant, dependent only on the confidence level ‘c’ that is multiplied by r to give the
approximate n. This constant is cleverly derived using natural logs, and the formula is easy to
remember. This presentation begins by showing the derivation of a rule for any confidence.
Allowing 0 defectives gives a minimum n, but this is a very strict criterion so a few more
constants are estimated to approximate n when 1 or 2 defectives are allowed. Finally there is
an example of why you should anticipate additional defectives and plan ahead for them.

Since the client isn’t always aware of just how daunting the request (i.e., “I want to be 99%
confident the defect rate is less than one in a million!), keeping some of these shortcuts in your
head allows you to compute ‘ballpark’ estimates on the spot, and you can appear smart and
prepared before you formalize a more precise answer.
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The purpose of this talk will be to take a quizzical look at some of the contradictions,
inconsistencies and confusions surrounding the fundamental definitions and theories of
Statistical Process Control, and demonstrate how these issues have a practical impact on the
effectiveness of SPC. This reduction in effectiveness stems from the difficulty of trying to learn
and use SPC. Over the years, the ideas and theories that SPC was premised upon have become



convoluted, confusing, redundant and inefficient. It is for this reason that learning SPC and
hence employing SPC effectively, is not such a straightforward task. For SPC to be effective it
seems as though a universal set of ideas and nomenclature- which is currently absent from the
field- need to be developed. In this talk | plan to demonstrate this necessity, and discuss some
of the key concepts that should be addressed in such a coherent and universal language.
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The Bernoulli CUSUM chart has been shown to be effective for monitoring the rate of
nonconforming items in high quality processes, where the in-control proportion of
nonconforming items (po) is typically low. The implementation of the Bernoulli CUSUM chart is
often based on the assumption that the in-control value po is known; therefore, when pg is
unknown, an accurate estimation is necessary. The low po inherent to high quality processes
implies that a very large, and often unrealistic, sample size may often be needed before enough
nonconforming items are observed to accurately estimate po. We recommend using a Bayes
estimator to approximate the value of po in order to incorporate practitioner knowledge and
avoid estimation issues when zero nonconforming items are observed. In this paper, we will
investigate the effects of parameter estimation in Phase | on the upper-sided Bernoulli CUSUM
chart. Especially when the prior distribution is accurately selected, the use of the Bayes
estimator is shown to reduce the effects of estimation errors. This paper provides the first



investigation into the effects of estimation errors on the performance of the Bernoulli CUSUM
chart, and further considers these effects with various sample sizes.
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The geometric control chart has been shown to be more effective than p and np-charts for
monitoring the proportion of non-conforming items, especially for high quality processes.
When implementing a geometric control chart, there are several practical issues that arise since
the in-control proportion non-conforming is typically unknown and needs to be estimated. In
this paper, we use the standard deviation of the average run length, SDARL, and the standard
deviation of the average number of inspected items to signal, SDARL’, to show that much larger
sample sizes (when compared to previous research) are needed in practice. The SDARL (or
SDARL*) is used since practitioners would estimate the chart’s control limits based on only one
Phase | sample and therefore, it is important to recognize the effect of the variability of the ARL
(or ARL*) on the chart’s expected performance. In addition, we provide some insights on how to
estimate the proportion non-conforming when zero nonconforming items are observed in the
retrospective Phase | sample. The results of this paper will enable practitioners to have a better
understanding of the statistical performance of geometric charts, based on estimated
parameters, for both the in-control and out-of-control nonconforming proportions.



C-T-4: “Design of Experiments”
Response Surfaces, Blocking and Split Plots: An Industrial Experiment Case Study

Willis Jensen
W. L. Gore & Associates, Inc.

Scott Kowalski
Minitab Inc.
Email: skowalski@minitab.com

This case study highlights issues in design of experiments and analysis of which experimenters
need to be aware. The particular experiment performed is more complex than standard
experiments because it has response surface, blocking and split-plot elements which pose
unique analysis challenges. The objective of the experiment was to determine appropriate
levels of three factors to optimize two responses to ensure that the manufactured product
meets customer requirements. This design has the desirable equivalent estimation property
discussed in Vining et al. (2005). After discussing equivalent estimation designs, we illustrate
portions of the analysis which are simplified as a result.
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Design of experiments followed by numeric and graphical optimization can be used to find a
‘sweet spot’; i.e. an operating window. To ensure specifications are consistently met,
uncertainty (variability) must be accounted for when defining boundaries of the operating
window. We present a method of accounting for uncertainty using tolerance intervals. In
general, larger sample sizes (DOEs) are required to control the width of tolerance intervals as
compared to confidence intervals that are typically used to size designs. A two-factor tableting
process is used to illustrate building and sizing a design to control the width of the tolerance
intervals associated with specifications.



Application of a Six Variable Mixture Test Design (With a Non-Mixture variable)

William Bettis Line
DOES Institute
Email: bill@doesinc.com

In this application a statistically designed experiment (DOE) was used to vary the six recipe
variables simultaneously. However, the effect of each mixture component was assessed
independently of other components. Previous to this application, product recipes were
determined by a method of changing one-factor-at-a-time (OFAT method). This test design
enabled measuring the interactions between the recipe variables, which could not have been
done with the OFAT method of testing.

The test design consisted of 31 specially selected recipes being evaluated. The 31 recipes were
specially selected to be representative of all possible recipes. Test products were made using
each recipe. Each recipe was compared directly to a ‘standard’ recipe - the current recipe at
that time. Over 70 quality measures, R&D product variables, and consumer response variables
were analyzed on each product. Statistical data models were used to find the optimum product
recipe.

A taste test using consumers was conducted to find their ‘best recipe’. Candy consumers were
asked to taste two products - a test recipe product and the standard product and indicate their
preference. The consumer preference data was analyzed for each recipe when compared to the
standard recipe. Statistical models were fitted to the data to find the consumer rating
variability and to find the optimum recipe that also met quality and R&D standards.

The project results included discovering an optimum recipe that was superior to the current
recipe used at that time. The conclusions were applied to ingredient recipes in three different
world-wide best-selling candy products. The optimized recipe has been used successfully for
many years.

This project showed that a statistically designed mixture experiment with a non-mixture
component can be used to find an optimum product according to consumers.

The author acknowledges the contributions of Dr. George E. P. Box for his suggested statistical
test design and his statistical analysis, particularly in the multi-response optimization phase to
find the best recipe.
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To detect anomalous events in network traffic, standard change-point detection algorithms are
challenged by the long-term correlations and non-stationarity in the stream of network counts.
We employ a Generalized Linear Mixed Model (GLMM) to model the correlation structure with
embedded random effects and to capture non-stationarity in the mean structure with fixed
effects. The GLMM paradigm also allows the response variable, which is often counts, to be
modeled directly. Using historical cycles of the data stream, the baseline GLMM model can be
built to describe the data stream structure. We then predict future realizations of the random
effects to be able to simulate potential sample paths for a future cycle. We detect changes in
network performance by using a transformed CUSUM tracking statistic for which a control limit
is found according to a desired false alarm rate. We illustrate the use of our proposed model
with data from a real network and also conduct a simulation study to characterize its sensitivity
to detect changes.
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As technology advances, the need for methods to monitor processes that produce readily
available inspection data becomes essential. In this paper a multinomial CUSUM chart is
proposed to monitor situations where items can be classified into more than two categories,
there is no subgrouping of the items, and the direction of the out-of-control shift in the
parameter vector can be specified. It is shown through examples that the multinomial CUSUM
chart can detect shifts in category probabilities at least as quickly, and in most cases faster,
than using multiple Bernoulli CUSUM charts. The properties of the multinomial CUSUM chart
are determined through a Markov chain representation. If the direction of the out-of-control
shift in the parameter vector cannot be specified, we recommend the use of multiple Bernoulli
CUSUM charts.
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Neutral zone classifiers are currently being used to allow for a region of neutrality when there is
insufficient information to assign a specific predicted class with adequate confidence. The
neutral zone classifier is derived by obtaining classification regions that trade off the cost of an
incorrect classification against the cost of remaining neutral. We propose a new neutral zone
classifier and show that it is equivalent to the Bayes classifier under certain conditions.
Additionally, we demonstrate that our proposed classifier outperforms previous neutral zone
classifiers in both expected cost of misclassification and computational complexity. The
proposed neutral zone classifier is illustrated with a microbial community profiling application
in which no training data is available. Previous implementations of neutral zone classification
have only dealt with the scenario that training data exists. We perform the neutral zone
classification in our example in an unsupervised setting using both parametric and
nonparametric methods. In the parametric setting we assume that a power transformation
exists such that the class distributions can be modeled as a mixture of normal distributions.
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