

The Importance of the **Sparsity Assumption** in Screening

Bradley Jones Quality & Productivity Research Conference June 2015

Outline

- 1. Introduction & Motivation
- 2. Standard Analytical Approaches in Screening
- 3. Simulation Studies and Demonstrations
- 4. Summary

Fisher's DOE Principles

- 1. Factorial principle
- 2. Randomization
- 3. Blocking
- 4. Replication

R.A. Fisher

DOE – Problem solving methodology for efficiently identifying cause-and-effect relationships.

Here we limit consideration to factor screening

We start with little prior knowledge and a large initial set of potential factors influencing the response

Our purpose is to identify the smaller set of active factors.

Due to cost considerations many industrial experiments have no true replication

Important Screening Assumption

Sparsity of effects

Operational definition:

fewer than half of the factors will be active.

Notation and terminology

m factors, *n* runs

Linear main effect model (ME)

$$y_i = \beta_0 + \sum_{j=1}^m \beta_j x_{ij} + \varepsilon_i \qquad i = 1, \dots, n$$

Model selection for unreplicated factorial designs

Any orthogonal main effects plan works for factor screening if:

- 1. Main effects are $>> \sigma$
- 2. No 2FIs are active
- 3. The number of active factors < n/2

If the number of active terms > n/2, automated model selection procedures tend to break down.

Why Lenth's method fails

Lenth's PSE (an estimate of σ) is based on the half of the estimated effects that are smallest in magnitude.

If more than half of the effects are active the estimate of σ is biased high making all the effects seem less significant.

JMP Demonstration

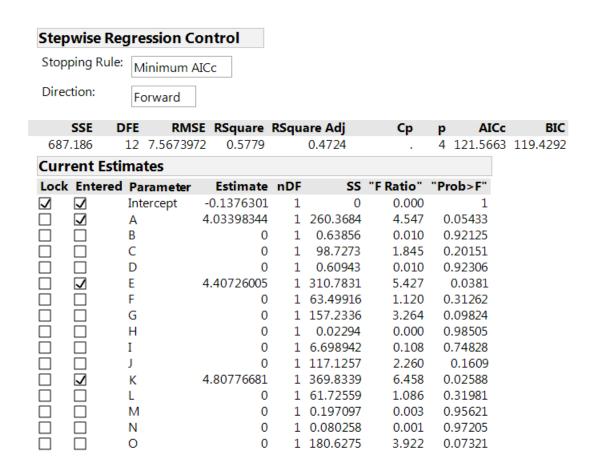
Contrasts							
			Lenth	Individual	Simultaneous		
Term	Contrast		t-Ratio	p-Value	p-Value		
C	-5.26127		-1.65	0.1104	0.7071		
Α	-3.57469		-1.12	0.2470	0.9756		
D	3.15063		0.99	0.3048	0.9949		
N	3.03315		0.95	0.3228	0.9972		
F	-2.94920		-0.92	0.3357	0.9980		
K	2.48290		0.78	0.4147	1.0000		
L	2.44733		0.77	0.4208	1.0000		
M	-2.12956		-0.67	0.5002	1.0000		
J	-0.62987		-0.20	0.8565	1.0000		
I	-0.46775		-0.15	0.8928	1.0000		
G	0.30719		0.10	0.9315	1.0000		
H	0.12815		0.04	0.9700	1.0000		
E	-0.11686		-0.04	0.9730	1.0000		
В	-0.09465		-0.03	0.9779	1.0000		
0	0.04300		0.01	0.9896	1.0000		

Automated Lenth's method for 2 (15-11) with 8 active factors fails.

Why Forward Stepwise regression fails

When many effects are large, the effect that is largest in magnitude may fail to enter because the remaining effects are contributing to the estimate of the error variance.

JMP Demonstration



Automated Forward stepwise for 2 (15-11) with 9 active factors fails.

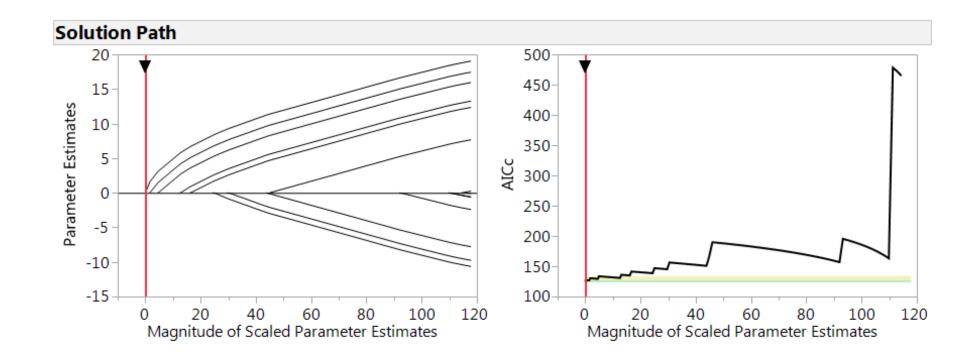
Why the Lasso fails

The Lasso works best when the number of runs far exceeds the number of model terms and there is substantial correlation among the predictors.

The analysis of designed experiments is clearly far from the above scenario.

Using generalized cross-validation criteria like AICc can over-penalize larger models when effect sparsity does not hold.

JMP Demonstration



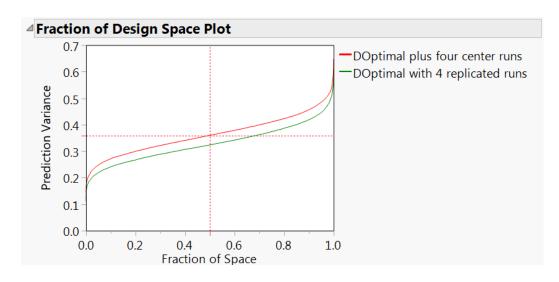
Automated Lasso for 2 (15-11) with 9 active factors fails.

Adding a few replicated runs works...

- 1. Even if all the effects are active.
- 2. Even though the resulting design is not orthogonal for the main effects.

Power Analysis							
Significan	ce Level	0.0	5				
Anticipate	d RMSE	0.66	6				
Anticipated							
Term	Coeffic	ient	Power				
Intercept		1	0.996				
X1		1	0.996				
X2		1	0.996				
X3		1	0.996				
X4		1	0.996				
X5		1	0.996				
X6		1	0.996				
X7		1	0.996				
X8		1	0.996				
X9		1	0.996				
X10		1	0.996				
X11		1	0.996				
X12		1	0.996				
X13		1	0.996				
X14		1	0.996				
X15		1	0.996				

Replicating Vertices vs. Center Runs



Relative Estimation Efficiency						
Efficiency of DOptimal with 4 replicated run						
Term	Relative to Reference Design					
Intercept	0.95618					
X1	1.06904					
X2	1.06904					
X3	1.06904					
X4	1.06904					
X5	1.06904					
X6	1.06904					
X7	1.06904					
X8	1.06904					
X9	1.06904					
X10	1.06904					
X11	1.06904					
X12	1.06904					
X13	1.06904					
X14	1.06904					
X15	1.06904					

Replicating vertices is more efficient than center runs for both parameter estimation and response prediction.

Conclusion

Unreplicated screening designs depend on the assumption of sparsity of effects.

An operational definition of effect sparsity is that the number of active effects is less than half the number of runs.

Replicating a few runs can allow for the detection of all active effects (SNR > 2) even when the sparsity assumption fails.

References

- 1.Box, G. E. P. and J. S. Hunter (1961). The 2^{k-p} fractional factorial designs. Technometrics **3**, pp. 449–458.
- 2.Lenth, Russell V. (1989). "Quick and Easy Analysis of Unreplicated Factorials" *Technometrics* **31** pp. 469-473.
- 3. Tibshirani, R. (1996). "Regression shrinkage and selection via the lasso". *Journal of the Royal Statistical Society, Series B* **58** (1): 267–288.