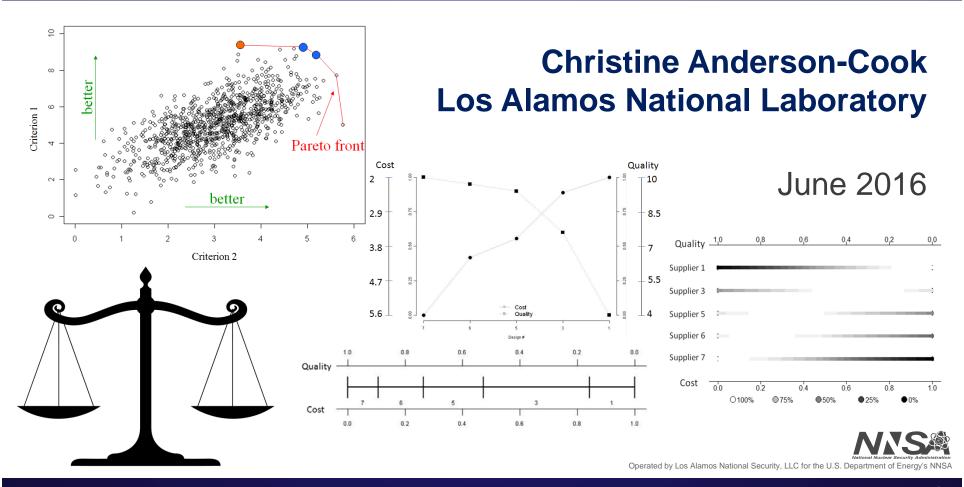
Optimizing in a Resource-Constrained World: Statisticians' Roles in Decision-Making



Outline

1. Motivation

- Multiple criteria are everywhere life is full of trade-offs
- Statisticians' roles in decision-making
- Introduction of examples
- 2. Define-Measure-Reduce-Combine-Select (DMRCS)
- 3. Pareto Front basics objectively removing noncontenders
- 4. Deciding among contenders challenges, strategies, facilitating consensus
- 5. Return to examples to illustrate the process
- 6. Conclusions

Why Statisticians in Decision-Making?

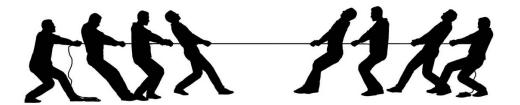
"Making good decisions relies on forecasting the future, but forecasting is imprecise, ...because it forces us to confront how much we don't know." C. Duhigg*

Decisions are all about:

- Thinking probabilistically about future alternatives (what could happen?, how likely is it?, what do I need now to be prepared for each?) "Envision tomorrow as an array of potential outcomes, all of which have different odds of coming true."*
- Balancing trade-offs in the presence of uncertainty
- Examples: Job hunting, buying a house, choosing a spouse

Christine's Axioms of Decision-Making in a Complex World

- 1. There are several aspects to the decision which need to be simultaneously considered and balanced.
- 2. Subject matter expertise is an essential element that needs to be leveraged to make an informed and justifiable decision.
- 3. There are multiple stakeholders who have different priorities based on their position, perspective and experience.



Potential Pitfalls in Decision-Making

 Leader dominates process and team members selfsuppress alternate ideas

Built in biases

- Availability bias disproportionate influence on readily available information
- Representative bias thinking a previous decision (where results of the decision are known) is a close match for current decision
- Confirmation bias looking for explanations to match current assessment
- Planning fallacy overly optimistic about own role, overly pessimistic about others' roles

Group think

- Informational cascades (first opinion holds disproportionate influence)
- Polarization (becoming more entrenched in original views when hearing alternatives)
- Common knowledge effect (tendency to overemphasize information that all know, and discount individual team member knowledge)

Thoughts on the Decision-Making Process from Christine Fox*

- Decision-makers are hungry for tools to make better decisions.
- It is critical the solutions offered match the actual problem being solved.
- Bigger decisions often involve harder choices with more difficult trade-offs.
- More senior decision-makers make more decisions and have less time to spend on each one.
- Statisticians have tools to participate in the process as facilitators and helpers.

^{*}served as acting US Deputy Secretary of Defense and in the Office of the Secretary of Defense (from her talk at JSM 2015)

Roles for Statisticians

Decision support:

 The statistician asked to perform analyses or collect data that are used as part of a broader collection of information to guide the decision. Technical expertise is being sought, but an opinion or contribution to the decision is not expected.

Provide the decision:

 The statistician gathers information to ensure they are answering the right question, and then is expected to provide a final answer with justification.

Decision analysis:

• The statistician provides decision support as well as is heavily involved in the process, but without the exclusive final say.

Expertise: system is comprised of interconnected process, variation exists in all processes, reducing variation and uncertainty are keys to success

Challenges of Decision-Making

- Articulating how we make decisions is difficult
 - Often we have received little or no training in this capacity.
 - Much of our training focuses on univariate objectives or subjectivity of priorities for several objectives is ignored or oversimplified
- Comparing multiple criteria requires deep understanding of the criteria themselves
 - For a single objective, whatever the optimum value is that is the best we can do
 - For multiple criteria, we need to be able to quantify how important the loss of moving away from the optimum as we trade-off
- Shortage of available tools for examining trade-offs
- Leading group negotitions toward consensus requires leadership skills and confidence

Shortage of examples in the literature to show how others have done this

Examples (continued)

1. Stockpile Maintenance Prioritization – managers need to determine which stockpiles are in most

urgent need of investment.

Index	Reliability	Urgency	Consequence	
1	7.97	3.5	8	
2	9.98	9.25	3	
3	4.3	8.25	8.5	
4	7.9	3.75	3	
5	9.65	4.25	9	
6	4.84	2.75	6.5	
7	5.73	4.5	5.5	
8	8.84	2.5	3.5	
9	7.11	9.25	8	

- In a given year, there are limited resources for investment (maintenance and surveillance)
- Several competing aspects to decision (time until anticipated problem with aging, availability of alternate munitions, consequences of a problem)
- Characterizing state of each stockpile needs to be standardized with quantitative metrics
- Different stakeholders have polarized priorities based on different perspectives

Examples (continued)

2. Experiment Design Selection – many natural metrics for judging the goodness of a design

- 1. Result in good fit of the model to the data
- 2. Provide good model parameter estimates
- 3. Provide good prediction throughout the design space.
- 4. Provide an estimate of "pure" experimental error.
- 5. Give sufficient information to allow for lack of fit test.
- 6. Provide a check on the homogeneous variance assumption.
- 7. Be insensitive (robust) to the presence of outliers in the data.
- 8. Be robust to to errors in the control of design levels.
- 9. Allow models of increasing order to be constructed sequentially.
- 10. Allow for experiments to be done in blocks.

Good estimation and prediction for chosen model

Ability to test various aspects of the model

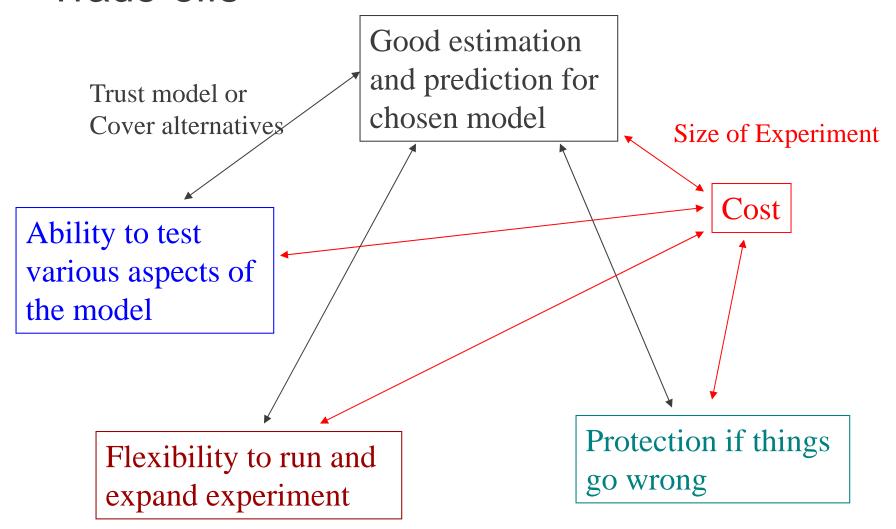
Protection if things go wrong

Flexibility to run and expand experiment

Cost

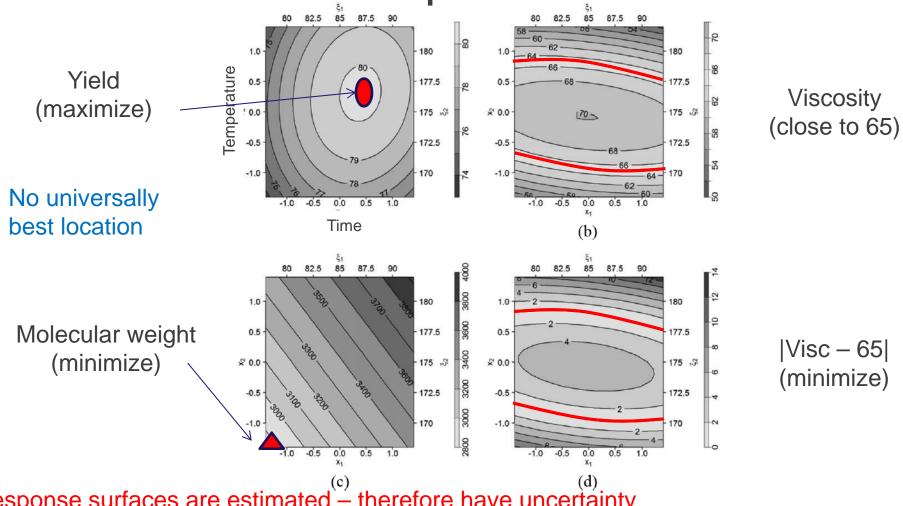
11. Be cost-effective.

Trade-offs



Examples (continued)

Multiple Response Optimization – most experiments run collect data on multiple attributes.



Response surfaces are estimated - therefore have uncertainty

Outline

1. Motivation

- Multiple criteria are everywhere life is full of trade-offs
- Roles in decision-making
- Introduction of examples
- 2. Define-Measure-Reduce-Combine-Select (DMRCS)
- 3. Pareto Front basics objectively removing noncontenders
- 4. Deciding among contenders challenges, strategies, facilitating consensus
- 5. Return to examples to illustrate the process
- 6. Conclusions

Formalized Process for Balancing Multiple Objectives in Decision-Making

 Buying a new car – what would a formal process for considering alternative look like?

Define

- What is important for the right car for me?
- What cars are available to choose between?

Measure

- What is the right criterion to measure the important attribute?
- Is high quality data available for the identified criteria?
- Gather relevant information

Reduce

- Are some aspects secondary in importance? Remove or defer?
- Can some cars be eliminated as implausible or non-contenders?

Combine

- How can I evaluate trade-offs between criteria (that are probably on different scales)?
- How much do I value the different criteria?

Select

- Which solution is best given my priorities?
- How does this solution compare to other options?
- Can I defend my choice?

Roles in DMRCS

Final selection, description of why

choice is best

Subject Matter Experts		Statisticians
Identify key aspects for right choice, clarify solution space	Define	Encourage big picture thinking to be inclusive, discourage premature oversimplification
Metrics for characterizing aspects of interest, gather data	Measure	Translating qualitative measures into quantitative metrics, data pedigree, uncertainty/variation in measurements
Select primary/secondary criteria, eliminate implausible solutions	Reduce	Elimination of non-contenders
Interpret range of choice, prioritize importance of criteria	Combine	Measures more comparable, visualization of alternatives
Final selection, description of why	Select	Tools for comparing top

Select

solutions, quantifying relative

performance

Revisiting Potential Decision-Making Pitfalls

 Leader dominates process and team members selfsuppress alternate ideas

Process encourages participation and divergent thinking – less leader centric

Built in biases

Availability bias, Representative bias, Confirmation bias, Planning fallacy

Having data on multiple criteria encouraged better perspective, more realism

Group think

 Informational cascades Early parts of process encourage different priorities

Later stages remind of need for compromise Polarization

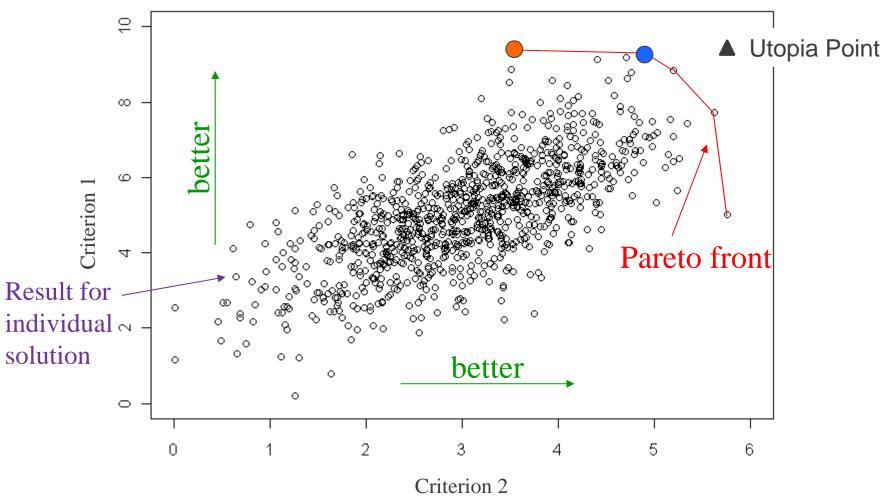
• Common knowledge effect Multiple criteria formally integrated for discussion and evaluation

Outline

1. Motivation

- Multiple criteria are everywhere life is full of trade-offs
- Roles in decision-making
- Introduction of examples
- 2. Define-Measure-Reduce-Combine-Select (DMRCS)
- 3. Pareto Front basics objectively removing noncontenders
- 4. Deciding among contenders challenges, strategies, facilitating consensus
- 5. Return to examples to illustrate the process
- 6. Conclusions

Pareto Front



- Choices not on Pareto front are not rational.
- The Pareto front represents the objective set of best solutions for any combination of weighting, scaling and DF choices (allowing non-contenders to be discarded)
- Collection of choices bounds ranges for criterion gives basis for comparison of alternatives

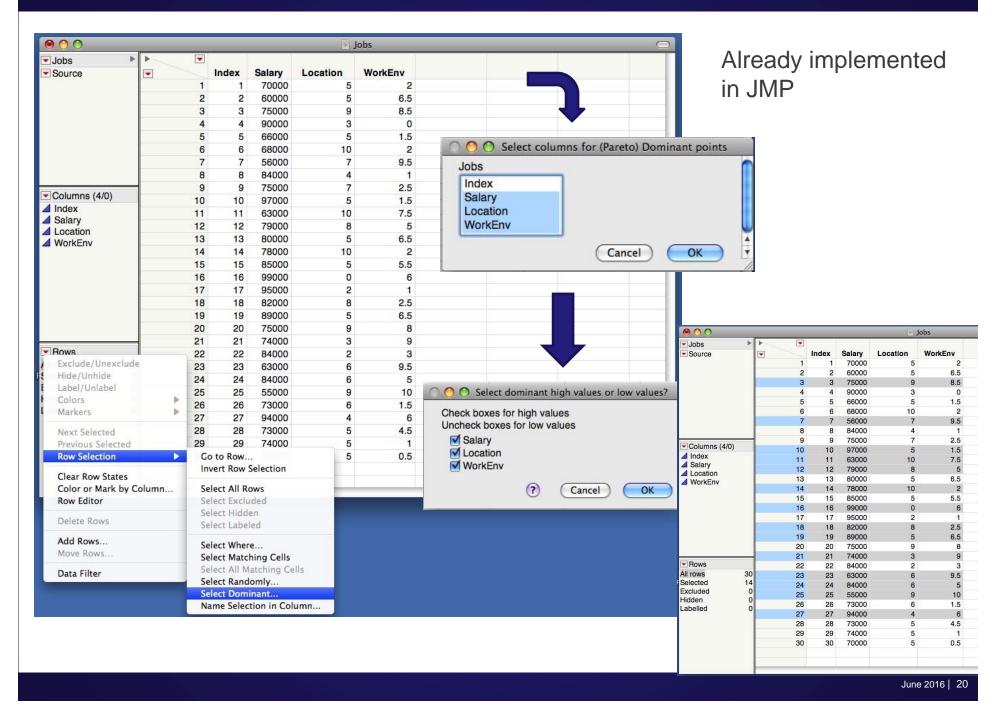
Constructing a Pareto Front

1. From an Enumerated List

- Straightforward for optimizing (minimize, maximize, hit target) for any number of criteria
- No practical computational constraints

2. When searching a solution space

- Two distinguishing aspects of search algorithm for constructing PF
 - How do define when algorithm has found an improvement and should update
 - Updating PF for each constructed solution b)



Outline

1. Motivation

- Multiple criteria are everywhere life is full of trade-offs
- Roles in decision-making
- Introduction of examples
- 2. Define-Measure-Reduce-Combine-Select (DMRCS)
- 3. Pareto Front basics objectively removing noncontenders
- 4. Deciding among contenders challenges, strategies, facilitating consensus
- 5. Return to examples to illustrate the process
- 6. Conclusions

The Subjective Phase

Complicating aspects:

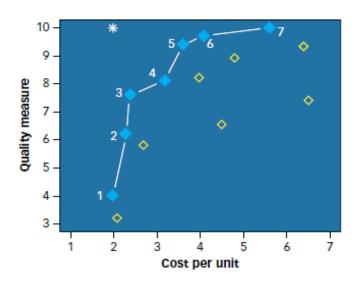
- Comparing characteristics on different scales what is the equivalent of one unit of cost on the quality scale?
- Different stakeholders have different priorities
- We often have not used a formal process for decisionmaking in the past ("when I see the right solution, I will know it")
- We are often tempted to bring in new criteria to help validate our gut-feeling favorite

Goal: Provide some graphical and quantitative tools that can help keep the discussion focused on defensible solutions and build common understanding

Different tools needed for different situations

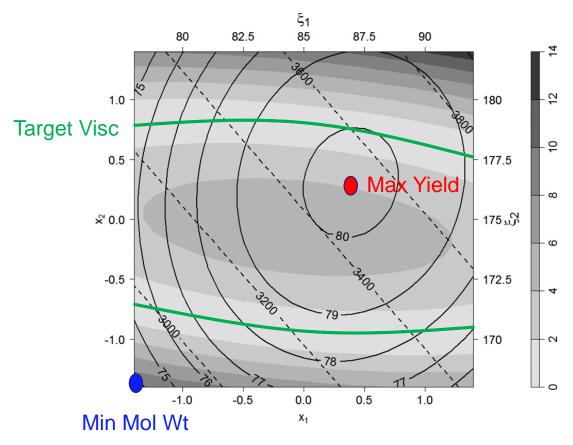
Possible tools: 1. Raw Data

In low dimensions (small # of choices & easy to visualize) – consider the solutions directly



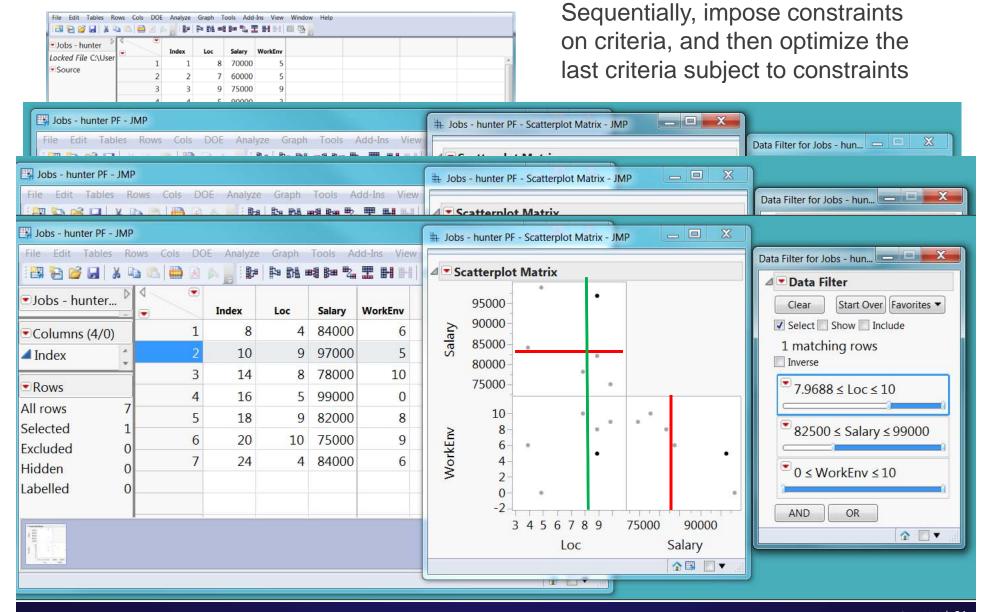
Cost vs Quality

Yield / Viscosity / Molecular Weight

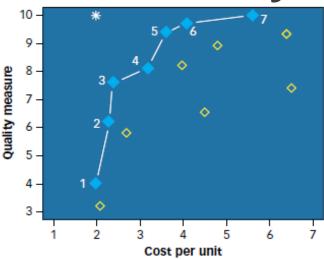


Real limitations on how this scales – often keeps it at the gut-feeling level

2. Conditional Optimization (Thresholds)



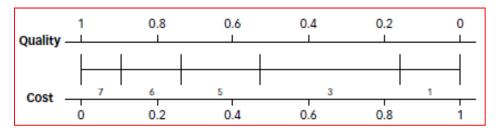
Desirability Based Graphical Tools



$$DF_{add} = w_{cost}d_{cost} + w_{qual}d_{qual}$$

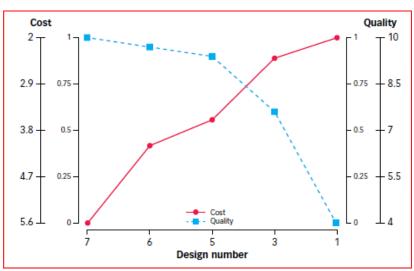
$$DF_{mult} = (d_{\text{cost}})^{w_{\text{cost}}} \bullet (d_{\text{qual}})^{w_{\text{qual}}}$$

Mixture Plot

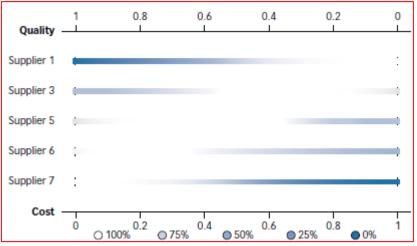


Subjective Elements:

1. Scaling of DF scores, 2. DF form, 3. Weights



Synthesized Efficiency Plot



Outline

1. Motivation

- Multiple criteria are everywhere life is full of trade-offs
- Roles in decision-making
- Introduction of examples
- 2. Define-Measure-Reduce-Combine-Select (DMRCS)
- 3. Pareto Front basics objectively removing noncontenders
- 4. Deciding among contenders challenges, strategies, facilitating consensus
- 5. Return to examples to illustrate the process
- 6. Conclusions

Example 1. Stockpile Maintenance Prioritization -determine which stockpiles are in Most challenging part was most urgent need of investment.

facilitating competing priorities

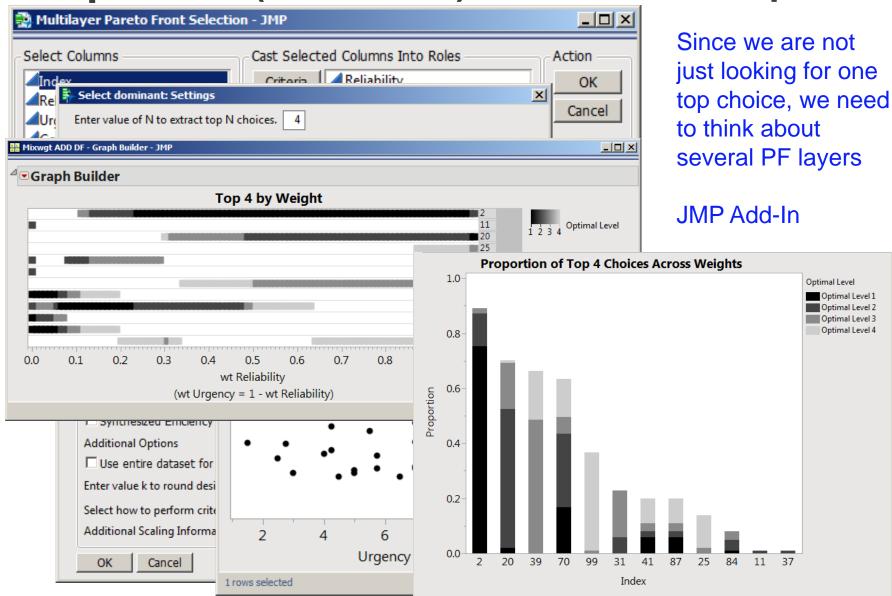
- Brainstorm for possible metrics
 - 1. Number of rounds required in inventory
 - Time required to spool up production

Having process helped!

- 2. Group metrics into categories redundant or too similar, missing metrics Potential categories emerge:
 - Make definition of each metric precise enough to assign scores
- Populate scores for each of the stockpiles
 - Translate score in table to a consistent scale

Calculate group scores 7. Plot the data to look for leading candidates – (Pareto front tools) Stockpile #1 Stockpile #2 Stockpile #3 $DF_{additive} = \sum w_i SM_i$ where Stockpile #4 Stockpile #5 $DF_{multiplicative} = \prod (SM_i)^{w_i}$ $\sum w_i = 1$ where Stockpile #6 Stockpile #7

TopN-PFS (Burke et al) – software to help with



2. Experiment Design Selection – many natural metrics for judging the goodness of a design

- 1. Result in good fit of the model to the data
- 2. Provide good model parameter estimates
- 3. Provide good prediction throughout the design space.
- 4. Provide an estimate of "pure" experimental error.
- 5. Give sufficient information to allow for lack of fit test.
- 6. Provide a check on the homogeneous variance assumption.
- 7. Be insensitive (robust) to the presence of outliers in the data.
- 8. Be robust to to errors in the control of design levels.
- 9. Allow models of increasing order to be constructed sequentially.
- 10. Allow for experiments to be done in blocks.
- 11. Be cost-effective.

Good estimation and prediction for chosen model

Ability to test various aspects of the model

Protection if things go wrong

Flexibility to run and expand experiment

Cost

Robust Parameter Design Experiment Example

• Process with 4 control (A-D) and 3 noise (E-G) factors

$$y = \beta_0 + \beta_A A + \beta_B B + \beta_C C + \beta_D D + \beta_{AB} A B$$
$$+ \beta_{AC} A C + \beta_{AD} A D + \beta_{BC} B C + \beta_{BD} B D + \beta_{CD} C D$$
$$+ \beta_E E + \beta_F F + \beta_G G + \beta_{AE} A E + \beta_{AF} A F + \beta_{AG} A G$$
$$+ \beta_{BE} B E + \beta_{BF} B F + \beta_{BG} B G + \beta_{CE} C E + \beta_{CF} C F$$
$$+ \beta_{CG} C G + \beta_{DE} D E + \beta_{DF} D F + \beta_{DG} D G + \varepsilon.$$

Terms involving control factors

Terms involving noise factors

- Goal: create a design that (1) estimates the mean model based on the control factors well, and (2) estimates the control x noise factor terms well
- Levels of each of 7 factors: (-1,0,+1)
- Available budget: 27-30 runs

Translate Goal into Criteria

Cost: Total Experiment size: 27, 28, 29, 30

Precision of estimation for mean and variance models:

$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \longrightarrow M = |X'X| = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}$$

 D_s -optimality allows focus on subsets of terms in model

$$(\mathbf{M}^{11})^{-1} = \mathbf{M}_{11} - \mathbf{M}_{12}\mathbf{M}_{22}^{-1}\mathbf{M}_{21} \Longrightarrow D_{s}$$
-mean-eff = $|(\mathbf{M}^{11})^{-1}|^{1/11}$
 $(\mathbf{M}^{22})^{-1} = \mathbf{M}_{22} - \mathbf{M}_{21}\mathbf{M}_{11}^{-1}\mathbf{M}_{12} \Longrightarrow D_{s}$ -var-eff = $|(\mathbf{M}^{22})^{-1}|^{1/15}$

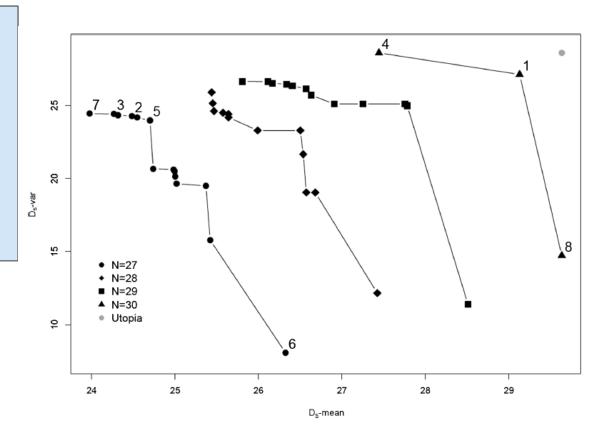
Example – Pareto front for N, D_s-mean, D_s-var

$$(3^7)^{27} + \cdots + (3^7)^{30}$$

= 10¹⁰⁰ possible designs

44 contenders on Pareto front

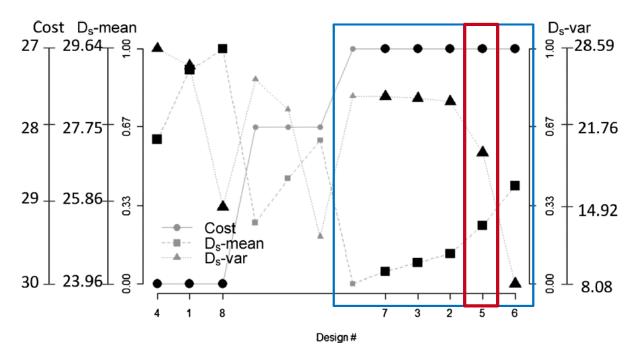
PAPE (Pareto Aggregating Point Exchange) Algorithm



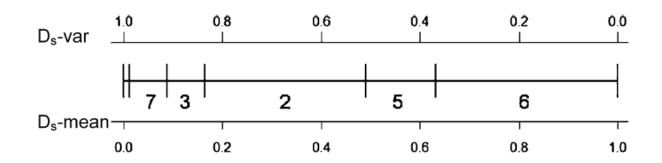
Still work to be done:
Ultimately only run one design – but now know choices and can find what is best for needs of experiment

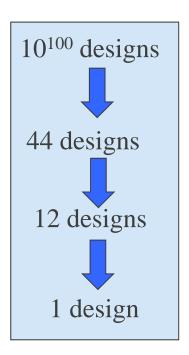
Lu, Anderson-Cook, Robinson (2011)

Understanding the Choices



$$Desirability = w_{Cost}C_{Cost} + w_{Dm}C_{Dm} + w_{Dv}C_{Dv}$$





Other Examples for Design Construction

1. Screening Experiment:

D-optimality [maximize |X' X|]
 Good estimation of pure error [maximize df_{PE}]

Good estimation of lack of fit [maximize tr(R'R) /(m-p)]

2. Split Plot Design

 Good estimation of terms when WP to SP variance ratio is unknown D(0.1), max D(10)]

[max

Size of experiment [min N]

Number of Whole Plots [min #WP]

3. Sequential Experimentation for Estimating System Reliability

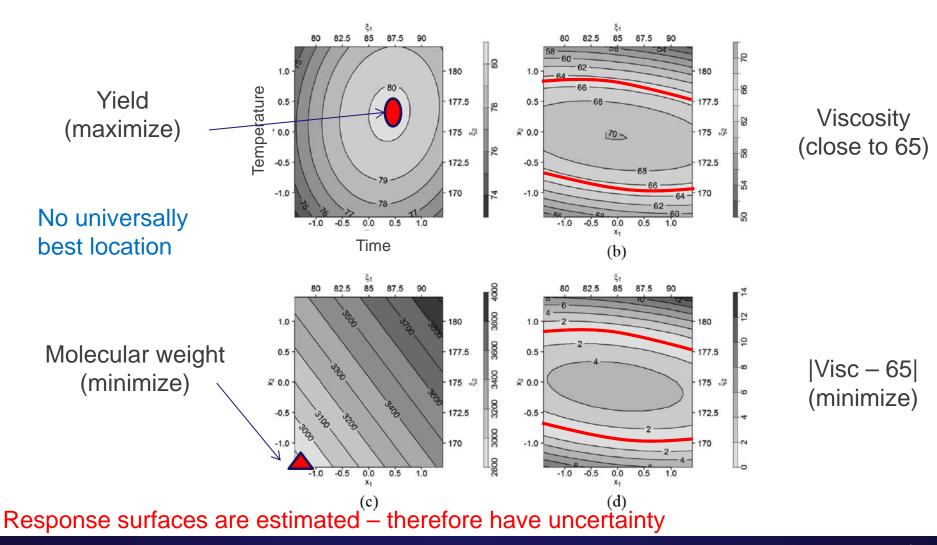
Good prediction of

system reliability [min uncertainty interval]
 mechanical sub-system reliability [min uncertainty interval]
 electrical sub-system reliability [min uncertainty interval]

4. Supersaturated Designs

Avoid correlation between terms in model [min E(s²)]
 Reduce bias on terms in primary model [min tr(AA')]

3. Multiple Response Optimization – most experiments run collect data on multiple attributes.



Experiment: 2 factor Central Composite Design with 3 responses

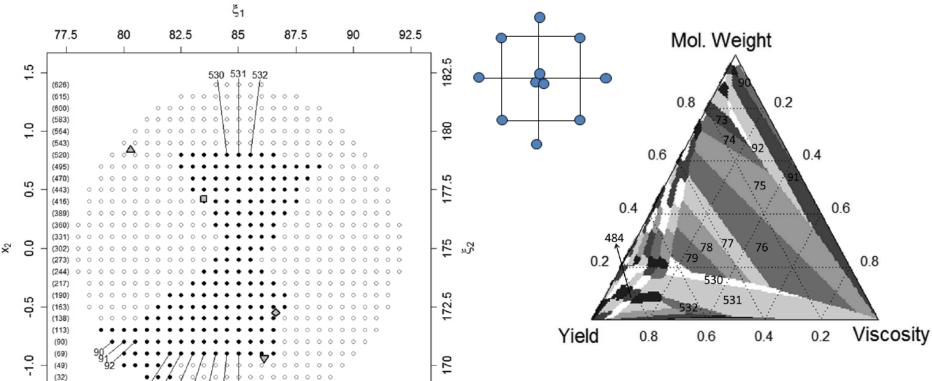
Natural var	iables	Coded v	/ariables		Respons	ses	
time)	ξ_2 (temperature)	<i>x</i> ₁	<i>x</i> ₂	y ₁ (yield)	y ₂ (viscosity)	y ₃ (molecular weight)	
80	170	-1	-1	76.5	62	2,940	
80	180	-1	1	77.0	60	3,470	•
0	170	1	-1	78.0	66	3,680	•
90	180	1	1	79.5	59	3,890	
35	175	0	0	79.9	72	3,480	
85	175	0	0	80.3	69	3,200	
35	175	0	0	80.0	68	3,410	
35	175	0	0	79.7	70	3,290	•
35	175	0	0	79.8	71	3,500	
2.07	175	1.414	0	78.4	68	3,360	
7.93	175	-1.414	0	75.6	71	3,020	
35	182.07	0	1.414	78.5	58	3,630	
35	167.93	0	-1.414	77.0	57	3,150	
				7	<u> </u>	K	

Goals:

maximize

target (close to 65) minimize

Optimizing – Finding the Pareto Front



$$Desirability = (C_{Yield})^{w_{Yield}} (C_{MW})^{w_{MW}} (C_{Visc})^{w_{Visc}}$$

0.0

0.5

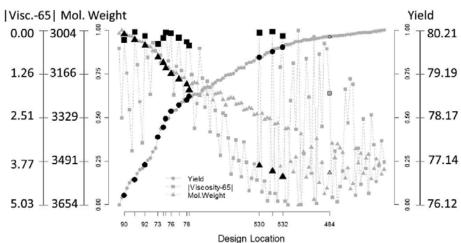
1.0

Chapman, Lu, Anderson-Cook (2014a & b)

-0.5

-1.5

-1.0



Outline

1. Motivation

- Multiple criteria are everywhere life is full of trade-offs
- Roles in decision-making
- Introduction of examples
- 2. Define-Measure-Reduce-Combine-Select (DMRCS)
- 3. Pareto Front basics objectively removing noncontenders
- 4. Deciding among contenders challenges, strategies, facilitating consensus
- 5. Return to examples to illustrate the process
- 6. Conclusions

How has this changed me?

- Clearer sense of what is objective and what is subjective:
 - More open-minded about alternative solutions
 - Learning more from my colleagues
 - Fairer in my assessments (eg. As journal reviewer)
 - "This is wrong" versus "I would have done it a different way"
- More thorough in my own decision-making in daily life
- More charitable about different opinions, and finding it easier to survive the political season ©

UNCLASSIFIED | LA-UR-16-23622 Los Alamos National Laboratory

Conclusions

Challenging and realistic decisions have multiple competing objectives

- A structured decision-making process can lead to better results
 - Define making a decision based on the right criteria, avoiding potential biases
 - Measure using good quality quantitative data for comparisons between alternatives
 - Reduce elimination of non-contenders
 - Combine thinking about how comparable alternatives are, visualizing of alternatives
 - Select making the right choice and being able to quantifying performance
- A flexible set of tools for different stages of the process will help adapt the process for different decisions
- Scientists, engineers and statisticians can benefit from early and frequent exposure to the decision-making process (presenting alternatives, fair pros and cons, defending a decision)

References

1. Anderson-Cook, C.M., Lu, L. (2015) "Much-Needed Structure: A New 5-Step Decision-Making Process Helps You Evaluate, Balance Competing Objectives" *Quality Progress* 48(10) 42-50.

- 2. Chapman, J., Lu, L., Anderson-Cook, C.M. (2014a) "Process Optimization for Multiple Responses Utilizing the Pareto Front Approach" *Quality Engineering* 26 253–268.
- 3. Chapman, J.L., Lu, L., Anderson-Cook, C.M. (2014b) "Incorporating Response Variability and Estimation Uncertainty into Pareto Front Optimization" *Computers & Industrial Engineering* 76 253-267
- 4. Lu, L., Anderson-Cook, C.M., Robinson, T.J. (2011) "Optimization of Designed Experiments Based on Multiple Criteria Utilizing a Pareto Frontier" *Technometrics* 53 353-365.
- 5. Lu, L., Anderson-Cook, C.M., Robinson, T.J. (2012) "A Case Study to Demonstrate Pareto Frontiers for Selecting a Best Response Surface Design with Simultaneously Optimizing Multiple Criteria" *Applied Stochastic Models in Business and Industry* 28 206-221.
- 6. Lu, L., Chapman, J., Anderson-Cook, C.M. (2013) "A Case Study on Selecting A Best Allocation of New Data for Improving the Estimation Precision of System and Sub-System Reliability using Pareto Fronts" *Technometrics* 55 473-487.
- 7. Lu, L., Chapman, J.L., Anderson-Cook, C.M. (2016) "Multiple Response Optimization for Higher Dimensions in Factors and Responses" Los Alamos National Laboratory Technical Report LAUR 16-20568
- 8. Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M. (2016) Response Surface Methodology: Product and Process Optimization Using Designed Experiments. New York: Wiley.