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Additive Manufacturing of metals
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Additive Manufacturing (AM) allows producing metal parts with innovative characteristics in 
terms of shape, surface properties, internal structure and overall value chain
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Additive Manufacturing of metals

How does it work? The laser powder bed fusion process
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Selective Laser Melting (SLM)

A scanner displaces a laser beam along a predefined path to locally melt the metal powder, layer 
by layer 

Courtesy: Lawrence Livermore Laboratory

• Laser beam diameter: 70 µm
• Average powder particle diameter: 35 µm
• Layer thickness: 50 µm
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Additive Manufacturing of metals

The market situation and competitive scenario
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• Main AM system developers in EU
• Merging & acquisitions involving big 

groups (e.g., Concept Laser & Arcam
acquired by GE)

• Many actors have impressive growth rates
(e.g., 3D Systems: 52%; Arcam: 43%)

• Technological competition mainly involves
in-line monitoring and quality control
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• Leading sectors are aerospace and 
healthcare

• They are also the sectors with higher
TRL (e.g., GE aviation engine
components, hip prosthesis, etc.)
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Additive Manufacturing of metals

The industrial barrier
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«The limited stability and repeatability of the process still represent a major barrier for the 
industrial breakthrough of metal AM systems» (Mani et al., 2015; Tapia and Elwany, 2014; 
Everton et al., 2016; Spears and Gold, 2016)

High 
defective

rates
(> 5 – 30%)

AM process
(SLM)

Current defective rates are not acceptable:
 Expensive materials (e.g., titanium powders > 150€/kg)
 Long processes (e.g., < 10 cm3/h)
 Long/expensive trial-and-error inflates the time-to-market
 Stringent quality requirements (aerospace & healthcare)

Residual
stresses Porosity

Impurities & 
contaminations

Geometrical
defects

Today, no commercial 
system is able to 

automatically detect
defects during the 

process
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Our background

Statistical monitoring of product and process data
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PROCESSInput

Controllable factors

random, 
uncontrolled factors

product

signals

Statistical monitoring of industrial processes for quick and reliable detection of out-of-control 
states and defects based on product and process data.  

Profile monitoring Surface monitoring Multi-fidelity data 
fusion

Colosimo et al. 
(2014), JQT 

Colosimo et al. 
(2008), JQT 

Colosimo et al. (2015), 
Prec. Eng. 

Profile monitoring Signal processing Multi-sensor 
data fusion

Grasso et al. (2016), JQT
Grasso et al. (2014), 

IJPR

Grasso et al. (2016), 
MSSP
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In-situ process monitoring and control (towards zero-defect metal AM)

Selective Laser Melting (SLM)

Renishaw AM250 Prototype SLM 

Electron Beam
Melting (EBM)

Direct Energy Deposition (DED) 
powder & wire

ARCAM A2

Image-based and multi-sensor statistical methods for on-line detection/localization of defects

Grasso et al. (2017), 
RCIM (under review)Grasso et al. (2016), Repossini et al. (2017)

Our current research in metal Additive Manufacturing

On-line monitoring via in-situ sensors

High-speed vision High-resolution low-speed vision Infrared vision
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Example of local over-heating in down-facing acute corners (AISI 316L steel)

High-speed image 
acquisition
(300 fps)

Colosimo and Grasso (2017), Journal of Quality Technology (under review)
Grasso et al. (2016), Journal of Manufacturing Science and Engineering

Hot-spot detection and localization in SLM

Case study

7



marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

Hot-spot detection and localization in SLM

Proposed approach

350 frames of size 121 × 71
Intensity profiles over time
(8bpp – scale: 0-255)

J frames

X (M pixels)
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Corner B (no defect)

HOT-SPOT

Image stream
Corner A (no defect)

Corner C (defect)
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Image stream processing 𝓤 ∈ ℝ𝐽×𝑀×𝑁

 𝓤 = {𝑼1, 𝑼2, … , 𝑼𝐽

• Principal Component 
Analysis (PCA) applied 
to image data

• No segmentation or 
edge detection 
operation needed

Hot-spot detection and localization in SLM

Proposed approach

Geospatial statistics & atmospheric science

9
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Hot-spot detection and localization in SLM

Proposed approach

Spatially weighted T-mode PCA (ST-PCA)

Underlying idea: incorporating pixel spatial correlation into the projection entailed by the T-
mode PCA to preserve the spatial depency and enhance the identification of local defects

Weighted sample variance –covariance matrix:

𝐒 =
1

𝑝−1
𝐗 − 1 𝐱 𝑇𝐖(𝐗 − 1 𝐱) 𝐗 ∈ ℝ𝑝×𝐽 is the data matrix (p=MxN pixels by J frames)

 𝐱 ∈ ℝ1×𝐽 is the sample mean vector

𝟏 is a 𝑝 × 1 vector of ones

The matrix 𝐒 is a quadratic form whose decomposition into orthogonal components via 
eigenvector analysis has a closed analytical solution, being 𝐖 a symmetric weighting matrix

𝐖 ∈ ℝ𝑝×𝑝 is the spatial weight matrix

The (𝑘, ℎ)-th element of the matrix, 𝑤𝑘,ℎ, quantifies the spatial dependency between the 
k-th and h-th pixels

10
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Hot-spot detection and localization in SLM

Proposed approach

Spatially weighted T-mode PCA (ST-PCA)

Use of Hotelling’s 𝑇2 as a synthetic index to describe the information content along the 
most relevant components of the video image data within 𝐽 observed frames

𝑇2 𝑚, 𝑛 = 

𝑙=1

𝑞
𝑧𝑙,𝑖
2

𝜆𝑙
,

where 𝜆𝑗 is the l-th eigenvalue, (𝑚, 𝑛) are the pixel coordinates 

(𝑚 = 1,… ,𝑀, 𝑛 = 1,… , 𝑁) and 𝑞 is the number of retained PCs

J frames
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Hot-spot detection and localization in SLM

Proposed approach

Spatially weighted T-mode PCA (ST-PCA)

Two possible ways to iteratively update the ST-PCA as new frames become available

Wold (1994), Gallagher et al. (1997), Li et al. 
(2000). 

Wang et al. (2005); De Ketelaere et al. (2015)

12
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Hot-spot detection and localization in SLM

Proposed approach

Spatially weighted T-mode PCA (ST-PCA)

Alarm rule based on k-means clustering of 𝑇2 𝑚, 𝑛
• When process is IC : 𝑘 = 2 clusters are expected (background + normal melting)
• When process is OOC : additional clusters correspond to defective areas (hot-spots)

Automated selection of k based on sums of squared within-distances: k>2  ALARM

No defect (IC) Hot-spot (OOC)

(Zhao et al. 2009; Hastie et al. 2009)

Cluster 1 
(background)

Cluster 2 
(normal 
melting 
zone)

Cluster 3 
(hot-spot)

13
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Hot-spot detection and localization in SLM

Results

Simulation analysis

Simple T-mode PCA vs ST-PCA (Average Run Length – ARL) 

T-mode

ST-PCA

T-mode

ST-PCA

14
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Hot-spot detection and localization in SLM

Results

Real case study
Example of T-mode PCA vs ST-PCA

@ frame J=40
No detection

@ frame J=40
Hot-spot detected

Approach 

Time of first 

signal 

(frame index) 

Signalled 

defect area  

(# pixels) 

Signalled 

defect location 

(X) (pixels) 

Signalled 

defect location 

(Y) (pixels) 

OOC Scenario 1 

Average 

intensity 

Recursive No detection - - - 

Mov. window No detection - - - 

T-mode 

PCA 

Recursive 𝑗 = 201 79 106.27 52.28 

Mov. window 𝑗 = 198 101 104.25 52.71 

ST-PCA 
Recursive 𝒋 = 𝟒𝟎 15 110.60 52.40 

Mov. window 𝒋 = 𝟒𝟎 15 110.60 52.40 

OOC Scenario 2 

Average 

intensity 

Recursive 𝑗 = 144 193 74.86 53.81 

Mov. window No detection - - - 

T-mode 

PCA 

Recursive 𝑗 = 95 219 74.95 54.49 

Mov. window No detection - - - 

ST-PCA 
Recursive 𝑗 = 94 231 74.29 55.80 

Mov. window 𝒋 = 𝟗𝟐 243 74.81 55.98 

OOC Scenario 3 

Average 

intensity 

Recursive No detection - - - 

Mov. window 𝑗 = 173 273 33.88 55.73 

T-mode 

PCA 

Recursive 𝑗 = 169 482 41.90 56.59 

Mov. window 𝑗 = 168 151 31.19 56.25 

ST-PCA 
Recursive 𝑗 = 164 131 30.31 56.94 

Mov. window 𝒋 = 𝟏𝟓𝟑 168 29.21 55.75 
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Other research directions

Spatter signature characterization for SLM process monitoring

High-speed image acquisition
(1000 Hz)

Image segmentation and 
classification between laser heated
zone (LHZ) and spatters

• Mainstream literature on in-situ monitoring filters out the 
spatters as nuisance factors

• But spatters may enclose relevant information about the 
process quality and stability

Estimation of statistical
descriptors

• average area
• spatial spread
• number of spatters
• Etc.

Image processing approach

Liu et al., 2011

16

Goal: spatter signature characterization for SLM process
monitoring (Repossini et al. 2017, Additive Manufacturing)



marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

Other research directions

Spatter signature characterization for SLM process monitoring

Spatter signature

Real case study
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IC energy density
(80 kJ/cm3)

OOC energy density
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95% CI for Mean Misclassification Error (40 um)

Comparison of classification models:
• Model 1: includes only LHZ area (benchmark)
• Model 2: LHZ + spatter descriptors
• Model 3: Spatter descriptors alone

Model 1 Model 2 Model 3

17
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Challenges and future developments

Next steps

Study of multi-sensor data fusion methods to enhance process monitoring performances
• co-axial + off-axis sensing (process monitoring at multiple levels)
• Evaluation of novel in-situ sensing solutions

Challenges to face

• Computational feasibility: 

• Hot-spot detection: 0.1s – 0.3s CPU time to process a batch of 1s acquired at 300 Hz 
(monitored area: 121x71 pixels);

• <0.1s CPU time to process a batch of 0.5s @ 1000fps

• Breadboard implementation on real-time platform needed to improve the 
computational efficiency;

• Integration & synchronization of image acquisition system with machine controller

• Big data stream management for continuous process monitoring

18
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Thank you for your attention
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