

POLITECNICO MILANO 1863

Statistical Process Monitoring of Additive Manufacturing via In-Situ Sensing

QPRC - June 13-15, 2017

<u>Marco Grasso</u> and Bianca Maria Colosimo Department of Mechanical Engineering,

Additive Manufacturing of metals

Additive Manufacturing (AM) allows producing metal parts with innovative characteristics in terms of shape, surface properties, internal structure and overall value chain

Additive Manufacturing of metals How does it work? The laser powder bed fusion process

- Selective Laser Melting (SLM)
- A scanner displaces a laser beam along a predefined path to locally melt the metal powder, layer by layer

Courtesy: Lawrence Livermore Laboratory

POLITECNICO MILANO 1863

2

- Laser beam diameter: 70 μm
- Average powder particle diameter: 35 μm
- Layer thickness: 50 μm

Additive Manufacturing of metals The market situation and competitive scenario

US Dollars

- Leading sectors are aerospace and healthcare
- They are also the sectors with higher TRL (e.g., GE aviation engine components, hip prosthesis, etc.)

- Main AM system developers in EU
- Merging & acquisitions involving big groups (e.g., Concept Laser & Arcam acquired by GE)
- Many actors have impressive growth rates (e.g., 3D Systems: 52%; Arcam: 43%)
- Technological competition mainly involves in-line monitoring and quality control

Additive Manufacturing of metals The industrial barrier

«The limited stability and repeatability of the process still represent a major barrier for the industrial breakthrough of metal AM systems» (Mani et al., 2015; Tapia and Elwany, 2014; Everton et al., 2016; Spears and Gold, 2016)

Current defective rates are not acceptable:

- Expensive materials (e.g., titanium powders > 150€/kg)
- Long processes (e.g., < 10 cm³/h)
- Long/expensive trial-and-error inflates the time-to-market
- Stringent quality requirements (aerospace & healthcare)

Today, no commercial system is able to automatically detect defects during the process

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

Our background Statistical monitoring of *product* and *process* data

- Statistical monitoring of industrial processes for quick and reliable detection of out-of-control
- states and defects based on product and process data.

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

Our current research in metal Additive Manufacturing On-line monitoring via *in-situ* sensors

Selective Laser Melting (SLM) Electron Beam Melting (EBM) Direct Energy Deposition (DED) powder & wire AcdMe.Lab Image: Selective Laser Melting (SLM) Electron Beam Melting (EBM) Renishaw AM250 Prototype SLM Electron Beam Melting (EBM)

In-situ process monitoring and control (towards zero-defect metal AM) Image-based and multi-sensor statistical methods for on-line detection/localization of defects

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

POLITECNICO MILANO 1863

Hot-spot detection and localization in SLM *Case study*

Example of local over-heating in down-facing acute corners (AISI 316L steel)

Colosimo and Grasso (2017), Journal of Quality Technology (under review) Grasso et al. (2016), Journal of Manufacturing Science and Engineering

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

POLITECNICO MILANO 1863

Spatially weighted T-mode PCA (ST-PCA)

Underlying idea: incorporating pixel spatial correlation into the projection entailed by the T-mode PCA to preserve the spatial depency and enhance the identification of local defects

Weighted sample variance –covariance matrix:

$$\mathbf{S} = \frac{1}{p-1} (\mathbf{X} - 1\bar{\mathbf{x}})^T \mathbf{W} (\mathbf{X} - 1\bar{\mathbf{x}}) \qquad \mathbf{X} \in \mathbb{R}^{p \times J} \text{ is the data matrix } (\mathbf{p}=\mathbf{M}\mathbf{x}\mathbf{N} \text{ pixels by J frames})$$
$$\bar{\mathbf{x}} \in \mathbb{R}^{1 \times J} \text{ is the sample mean vector}$$
$$\mathbf{1} \text{ is a } p \times 1 \text{ vector of ones}$$

 $\mathbf{W} \in \mathbb{R}^{p \times p}$ is the spatial weight matrix

The (k, h)-th element of the matrix, $w_{k,h}$, quantifies the spatial dependency between the k-th and h-th pixels

The matrix \mathbf{S} is a quadratic form whose decomposition into orthogonal components via eigenvector analysis has a closed analytical solution, being \mathbf{W} a symmetric weighting matrix

Spatially weighted T-mode PCA (ST-PCA)

Use of Hotelling's T^2 as a synthetic index to describe the information content along the most relevant components of the video image data within *J* observed frames

 $T^{2}(m,n) = \sum_{l=1}^{q} \frac{z_{l,i}^{2}}{\lambda_{l}}, \qquad \text{where } \lambda_{j} \text{ is the } l\text{-th eigenvalue, } (m,n) \text{ are the pixel coordinates} \\ (m = 1, ..., M, n = 1, ..., N) \text{ and } q \text{ is the number of retained PCs}$

POLITECNICO MILANO 1863

Spatially weighted T-mode PCA (ST-PCA)

Two possible ways to iteratively update the ST-PCA as new frames become available

Wold (1994), Gallagher et al. (1997), Li et al. (2000).

Wang et al. (2005); De Ketelaere et al. (2015)

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

Spatially weighted T-mode PCA (ST-PCA)

Alarm rule based on k-means clustering of $T^2(m, n)$

- When process is IC : k = 2 clusters are expected (background + normal melting)
- When process is OOC : additional clusters correspond to defective areas (hot-spots)

Automated selection of k based on sums of squared within-distances: $k>2 \rightarrow$ ALARM (*Zhao et al. 2009; Hastie et al. 2009*)

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

POLITECNICO MILANO 1863

Cluster 3

Hot-spot detection and localization in SLM *Results*

Simulation analysis

Simple T-mode PCA vs ST-PCA (Average Run Length – ARL)

T-mode PCA, Small hot-spot, Tau=45

120

background

POLITECNICO MILANO 1863

14

Hot-spot detection and localization in SLM *Results*

Real case study

Example of T-mode PCA vs ST-PCA

Approach		Time of first
		signal
		(frame index)
OOC Scenario 1		
Average	Recursive	No detection
intensity	Mov. window	No detection
T-mode	Recursive	<i>j</i> = 201
PCA	Mov. window	<i>j</i> = 198
ST-PCA	Recursive	<i>j</i> = 40
	Mov. window	<i>j</i> = 40
OOC Scenario 2		
Average	Recursive	<i>j</i> = 144
intensity	Mov. window	No detection
T-mode	Recursive	<i>j</i> = 95
PCA	Mov. window	No detection
ST-PCA	Recursive	<i>j</i> = 94
	Mov. window	j = 92
OOC Scenario 3		
Average	Recursive	No detection
intensity	Mov. window	<i>j</i> = 173
T-mode	Recursive	<i>j</i> = 169
PCA	Mov. window	<i>j</i> = 168
ST-PCA	Recursive	<i>j</i> = 164
	Mov. window	<i>j</i> = 153

120

120

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

POLITECNICO MILANO 1863

Other research directions Spatter signature characterization for SLM process monitoring

- Mainstream literature on in-situ monitoring filters out the spatters as nuisance factors
- But spatters may enclose relevant information about the process quality and stability

Goal: spatter signature characterization for SLM process monitoring (Repossini et al. 2017, Additive Manufacturing)

Image processing approach High-speed image acquisition (1000 Hz)

Image segmentation and classification between laser heated zone (LHZ) and spatters

Estimation of statistical descriptors

- average area
- spatial spread
- number of spatters
- Etc.

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

Other research directions Spatter signature characterization for SLM process monitoring

Real case study

IC energy density (80 kJ/cm³)

OOC energy density (120 kJ/cm³)

Spatter signature

Comparison of classification models:

- Model 1: includes only LHZ area (benchmark)
- Model 2: LHZ + spatter descriptors
- Model 3: Spatter descriptors alone

95% CI for Mean Misclassification Error (40 um)

POLITECNICO MILANO 1863

17

Challenges and future developments

Challenges to face

- Computational feasibility:
 - Hot-spot detection: 0.1s 0.3s CPU time to process a batch of 1s acquired at 300 Hz (monitored area: 121x71 pixels);
 - <0.1s CPU time to process a batch of 0.5s @ 1000fps
 - Breadboard implementation on real-time platform needed to improve the computational efficiency;
- Integration & synchronization of image acquisition system with machine controller
- **Big data stream management** for continuous process monitoring

Next steps

Study of **multi-sensor data fusion** methods to enhance process monitoring performances

- co-axial + off-axis sensing (process monitoring at multiple levels)
- Evaluation of novel in-situ sensing solutions

Thank you for your attention

marcoluigi.grasso@polimi.it; biancamaria.colosimo@polimi.it

References

٠

- **Colosimo, B.M., Grasso, M. (2017)**, *Spatially weighted PCA for monitoring video image data with application to additive manufacturing*, Journal of Quality Technology, under review
- **Colosimo, B. M., Semeraro, Q., & Pacella, M. (2008)**. Statistical process control for geometric specifications: on the monitoring of roundness profiles. *Journal of quality technology, 40*(1), 1.
- **Colosimo, B. M., Cicorella, P., Pacella, M., & Blaco, M. (2014)**. From profile to surface monitoring: SPC for cylindrical surfaces via Gaussian Processes. *Journal of Quality Technology*, *46*(2), 95.
- Colosimo, B. M., Pacella, M., & Senin, N. (2015). Multisensor data fusion via Gaussian process models for dimensional and geometric verification. *Precision Engineering*, 40, 199-213.
- **De Ketelaere, B., Hubert, M., & Schmitt, E. (2015)**. Overview of PCA-Based Statistical Process-Monitoring Methods for Time-Dependent, High-Dimensional Data. Journal of Quality Technology, 47(4), 318.
- Everton, S. K., Hirsch, M., Stravroulakis, P., Leach, R. K., & Clare, A. T. (2016). Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Materials & Design, 95, 431-445.
- Gallagher, N., Wise, B., Butler, S., White, D., and Barna, G. (1997). "Development and Benchmarking of Multivariate Statistical Process Control Tools for a Semiconductor Etch Process: Improving Robustness through Model Updating". Process: Impact of Measurement Selection and Data Treatment on Sensitivity, Safe process 97, pp. 26–27.
- Grasso, M., & Colosimo, B. M. (2017). Process defects and in situ monitoring methods in metal powder bed fusion: a review. Measurement Science and Technology, 28(4), 044005.
- Grasso, M., Laguzza, V., Semeraro, Q., & Colosimo, B. M. (2017). In-Process Monitoring of Selective Laser Melting: Spatial Detection of Defects Via Image Data Analysis. Journal of Manufacturing Science and Engineering, 139(5), 051001.
- Grasso, M., Demir, A.G., Previtali, B., Colosimo, B.M. (2017), In-situ Monitoring of Selective Laser Melting of Zinc Powder via Infrared Imaging of the Process Plume, under review in Robotics and Computer-Integrated Manufacturing
 - **Grasso M., Menafoglio A., Colosimo B. M., Secchi P. (2016),** Using Curve Registration Information to Enhance Profile Monitoring of Signal Data, Journal of Quality Technology, 48(2), 99-127

- Grasso M., Chatterton S., Pennacchi P., Colosimo B.M., (2016), A Data-Driven Method to Enhance Vibration Signal Decomposition for Rolling Bearing Fault Analysis, Mechanical Systems and Signal Processing, 81, 126-147
- Grasso M., Colosimo B.M., Pacella M. (2014), Profile Monitoring via Sensor Fusion: the use of PCA Methods for Multi-Channel Data, International Journal of Production Research, 52 (20), 6110 – 6135
- Hastie et al. 2009. Unsupervised learning. In The elements of statistical learning (485-585). Springer New York.
- Li, W., Yue, H. H., Valle-Cervantes, S., & Qin, S. J. (2000). Recursive PCA for adaptive process monitoring. Journal of process control, 10(5), 471-486.
- Liu et al. 2015. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder. Materials & Design, 87, 797-806.
- Mani, M., Lane, B., Donmez, A., Feng, S., Moylan, S., & Fesperman, R. (2015). Measurement science needs for real-time control of additive manufacturing powder bed fusion processes. National Institute of Standards and Technology, Gaithersburg, MD, NIST Interagency/Internal Report (NISTIR), 8036.
- **Repossini G., Laguzza V., Grasso M., Colosimo B.M., (2017),** On the use of spatter signature for in-situ monitoring of Laser Powder Bed Fusion, Additive Manufacturing,
- Spears, T. G., & Gold, S. A. (2016). In-process sensing in selective laser melting (SLM) additive manufacturing. Integrating Materials and Tapia, G., & Elwany, A. (2014). A review on process monitoring and control in metal-based additive manufacturing. Journal of Manufacturing Science and Engineering, 136(6), 060801.
- Wang, X., Kruger, U., & Irwin, G. W. (2005). Process monitoring approach using fast moving window PCA. Industrial & Engineering Chemistry Research, 44(15), 5691-5702.
- Wold, S. (1994). "Exponentially Weighted Moving Principal Components Analysis and Projections to Latent Structures". Chemometrics and Intelligent Laboratory Systems, 23(1), pp. 149– 161.
- Zhao, Q., Xu, M., Fränti, P., 2009, Sum-of-squares based cluster validity index and significance analysis. Adaptive and Natural Computing Algorithms, 5495, 313-322