A Class of Purely Sequential Minimum Risk Point Estimation Methodologies with Second-Order Properties

Jun Hu
(Joint work with Prof. Nitis Mukhopadhyay)

Department of Mathematics and Statistics
University of Vermont, Burlington
jun.hu@uvm.edu

June 12, 2019

Outline

1. Introduction
1.1. Sequential Analysis
1.2. Minimum Risk Point Estimation (MRPE)
1.3. Estimators for σ
2. Sequential MRPE
2.1 Methodologies
2.2 Asymptotics
3. Illustrations
4. Simulated Performances
5. Future Work

Selected Reference
1.1. Sequential Analysis

- Sequential analysis is founded and developed by Abraham Wald during World War II.

1.1. Sequential Analysis
- Sequential analysis is founded and developed by Abraham Wald during World War II.

- The sample size is not predetermined.
1.1. Sequential Analysis
- Sequential analysis is founded and developed by Abraham Wald during World War II.

- The sample size is not predetermined.
- One observation is recorded at a time successively until termination.
1.2. Minimum Risk Point Estimation (MRPE)
- Originally formulated in Robbins (1959).
1.2. Minimum Risk Point Estimation (MRPE)
- Originally formulated in Robbins (1959).
- Assuming $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} N\left(\mu, \sigma^{2}\right)$, with μ and σ^{2} both unknown.
- Originally formulated in Robbins (1959).
- Assuming $X_{1}, \ldots, X_{n} \stackrel{i . i . d .}{\sim} N\left(\mu, \sigma^{2}\right)$, with μ and σ^{2} both unknown.
- Loss function:

$$
\begin{equation*}
L_{n} \equiv L_{n}\left(\mu, \bar{X}_{n}\right)=A\left(\bar{X}_{n}-\mu\right)^{2}+c n \tag{1}
\end{equation*}
$$

where $A(>0)$ and $c(>0)$ are both known.

- Originally formulated in Robbins (1959).
- Assuming $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} N\left(\mu, \sigma^{2}\right)$, with μ and σ^{2} both unknown.
- Loss function:

$$
\begin{equation*}
L_{n} \equiv L_{n}\left(\mu, \bar{X}_{n}\right)=A\left(\bar{X}_{n}-\mu\right)^{2}+c n \tag{1}
\end{equation*}
$$

where $A(>0)$ and $c(>0)$ are both known.

- Risk function:

$$
\begin{equation*}
R_{n}(c) \equiv E_{\mu, \sigma}\left[L_{n}\left(\mu, \bar{X}_{n}\right)\right]=A \sigma^{2} n^{-1}+c n . \tag{2}
\end{equation*}
$$

1.2. Minimum Risk Point Estimation (MRPE)

- Optimal fixed sample size:

$$
\begin{equation*}
n^{*} \equiv n(c)=\sigma \sqrt{A / c} . \tag{3}
\end{equation*}
$$

1.2. Minimum Risk Point Estimation (MRPE)

- Optimal fixed sample size:

$$
\begin{equation*}
n^{*} \equiv n(c)=\sigma \sqrt{A / c} . \tag{3}
\end{equation*}
$$

- Minimum risk:

$$
\begin{equation*}
R_{n^{*}}(c)=2 c n^{*} \tag{4}
\end{equation*}
$$

1.2. Minimum Risk Point Estimation (MRPE)

- Optimal fixed sample size:

$$
\begin{equation*}
n^{*} \equiv n(c)=\sigma \sqrt{A / c} . \tag{3}
\end{equation*}
$$

- Minimum risk:

$$
\begin{equation*}
R_{n^{*}}(c)=2 c n^{*} \tag{4}
\end{equation*}
$$

- NO fixed-sample-size procedure.

Solutions

- Two-stage: Stein $(1945,1949)$
- Purely sequential: Robbins (1959), Starr (1966)
- Three-stage: Mukhopadhyay (1990)
- Accelerated sequential: Mukhopadhyay and Solanky (1991), Mukhopadhyay (1996)

Solutions

- Two-stage: Stein $(1945,1949)$
- Purely sequential: Robbins (1959), Starr (1966)
- Three-stage: Mukhopadhyay (1990)
- Accelerated sequential: Mukhopadhyay and Solanky (1991), Mukhopadhyay (1996)
- σ is unknown.
- A general arbitrary estimator, assumed positive w.p.1.,

$$
W_{n} \equiv W_{n}\left(X_{1}, \ldots, X_{n}\right)
$$

Conditions on W_{n}

C1 Independence: \bar{X}_{n} and $\left\{W_{k} ; 2 \leq k \leq n\right\}$ are distributed independently for all $n \geq 2$.

Conditions on W_{n}

C1 Independence: \bar{X}_{n} and $\left\{W_{k} ; 2 \leq k \leq n\right\}$ are distributed independently for all $n \geq 2$.
C 2 Convergence in probability: $W_{n} \xrightarrow{\mathrm{P}_{\mu, \sigma}} \sigma$ as $n \rightarrow \infty$.

Conditions on W_{n}

C1 Independence: \bar{X}_{n} and $\left\{W_{k} ; 2 \leq k \leq n\right\}$ are distributed independently for all $n \geq 2$.
C2 Convergence in probability: $W_{n} \xrightarrow{P_{\mu, \sigma}} \sigma$ as $n \rightarrow \infty$.
C3 Asymptotic normality: $\sqrt{n}\left(\sigma^{-1} W_{n}-1\right) \xrightarrow{\mathscr{L}} N\left(0, \delta^{2}\right)$ as $n \rightarrow \infty$.

Conditions on W_{n}

C1 Independence: \bar{X}_{n} and $\left\{W_{k} ; 2 \leq k \leq n\right\}$ are distributed independently for all $n \geq 2$.
C2 Convergence in probability: $W_{n} \xrightarrow{{ }_{\mu} \sigma} \sigma$ as $n \rightarrow \infty$.
C3 Asymptotic normality: $\sqrt{n}\left(\sigma^{-1} W_{n}-1\right) \xrightarrow{\mathscr{L}} N\left(0, \delta^{2}\right)$ as $n \rightarrow \infty$.
C4 Uniform continuity in probability: For every $\varepsilon>0$, there exists a large ν and small $\gamma>0$ for which $\forall n \geq \nu$,

$$
P_{\mu, \sigma}\left(\max _{0 \leq k \leq n \gamma}\left|W_{n+k}-W_{n}\right| \geq \varepsilon\right)<\varepsilon
$$

C5 Kolmogorov's inequality: For every $\varepsilon>0$, and some $2 \leq n_{1} \leq n_{2}$, with $r \geq 2$,

$$
P_{\mu, \sigma}\left(\max _{n_{1} \leq n \leq n_{2}}\left|W_{n}-\sigma\right| \geq \varepsilon\right) \leq \varepsilon^{-r} E_{\mu, \sigma}\left[\left|W_{n_{1}}-\sigma\right|^{r}\right] .
$$

C5 Kolmogorov's inequality: For every $\varepsilon>0$, and some $2 \leq n_{1} \leq n_{2}$, with $r \geq 2$,

$$
P_{\mu, \sigma}\left(\max _{n_{1} \leq n \leq n_{2}}\left|W_{n}-\sigma\right| \geq \varepsilon\right) \leq \varepsilon^{-r} E_{\mu, \sigma}\left[\left|W_{n_{1}}-\sigma\right|^{r}\right] .
$$

C6 Order of central absolute moments: For $n \geq 2$ and $r \geq 2$,

$$
E_{\mu, \sigma}\left[\left|W_{n}-\sigma\right|^{r}\right]=O\left(n^{-r / 2}\right)
$$

C5 Kolmogorov's inequality: For every $\varepsilon>0$, and some $2 \leq n_{1} \leq n_{2}$, with $r \geq 2$,

$$
P_{\mu, \sigma}\left(\max _{n_{1} \leq n \leq n_{2}}\left|W_{n}-\sigma\right| \geq \varepsilon\right) \leq \varepsilon^{-r} E_{\mu, \sigma}\left[\left|W_{n_{1}}-\sigma\right|^{r}\right] .
$$

C6 Order of central absolute moments: For $n \geq 2$ and $r \geq 2$,

$$
E_{\mu, \sigma}\left[\left|W_{n}-\sigma\right|^{r}\right]=O\left(n^{-r / 2}\right)
$$

C7 Wiener's condition: $E_{\mu, \sigma}\left[\sup _{n \geq 2} W_{n}\right]<\infty$.
2.1 Methodologies

- Hu and Mukhopadhyay (2019)
- Hu and Mukhopadhyay (2019)
- Stopping rules:
$\mathcal{P}: N_{\mathcal{P}} \equiv N_{\mathcal{P}}(c)=\inf \left\{n \geq m(\geq 2): n \geq \sqrt{A / c}\left(W_{n}+n^{-\lambda}\right)\right\}$, where $\lambda\left(>\frac{1}{2}\right)$ is held fixed.
- Hu and Mukhopadhyay (2019)
- Stopping rules:
$\mathcal{P}: N_{\mathcal{P}} \equiv N_{\mathcal{P}}(c)=\inf \left\{n \geq m(\geq 2): n \geq \sqrt{A / c}\left(W_{n}+n^{-\lambda}\right)\right\}$,
where $\lambda\left(>\frac{1}{2}\right)$ is held fixed.
- $P_{\mu, \sigma}\left\{N_{\mathcal{P}}<\infty\right\}=1$ and $N_{\mathcal{P}} \uparrow \infty$ w.p. 1 as $c \downarrow 0$.
- Upon $\left\{N_{\mathcal{P}}, X_{1}, \ldots, X_{m}, X_{m+1}, \ldots, X_{N_{\mathcal{P}}}\right\}$:

$$
\begin{equation*}
\bar{X}_{N_{\mathcal{P}}} \equiv N_{\mathcal{P}}^{-1} \sum_{j=1}^{N_{\mathcal{P}}} X_{j} . \tag{6}
\end{equation*}
$$

- Risk Efficiency:

$$
\xi_{\mathcal{P}}(c)=\frac{R_{N_{\mathcal{P}}}(c)}{R_{n^{*}}(c)}=\frac{1}{2} E_{\mu, \sigma}\left[N_{\mathcal{P}} / n^{*}\right]+\frac{1}{2} E_{\mu, \sigma}\left[n^{*} / N_{\mathcal{P}}\right] ;
$$

2.1 Methodologies

- Risk Efficiency:

$$
\xi_{\mathcal{P}}(c)=\frac{R_{N_{\mathcal{P}}}(c)}{R_{n^{*}}(c)}=\frac{1}{2} E_{\mu, \sigma}\left[N_{\mathcal{P}} / n^{*}\right]+\frac{1}{2} E_{\mu, \sigma}\left[n^{*} / N_{\mathcal{P}}\right] ;
$$

- Regret:

$$
\omega_{\mathcal{P}}(c)=R_{N_{\mathcal{P}}}(c)-R_{n^{*}}(c)=c E_{\mu, \sigma}\left[\left(N_{\mathcal{P}}-n^{*}\right)^{2} / N_{\mathcal{P}}\right] .
$$

- Asymptotic First-Order Efficiency:

$$
\begin{equation*}
\lim _{c \rightarrow 0} \mathrm{E}_{\mu, \sigma}\left[N_{\mathcal{P}} / n^{*}\right]=1 \tag{7}
\end{equation*}
$$

- Asymptotic First-Order Efficiency:

$$
\begin{equation*}
\lim _{c \rightarrow 0} \mathrm{E}_{\mu, \sigma}\left[N_{\mathcal{P}} / n^{*}\right]=1 \tag{7}
\end{equation*}
$$

- Asymptotic First-Order Risk Efficiency:

$$
\begin{equation*}
\lim _{c \rightarrow 0} \xi_{\mathcal{P}}(c)=1, \tag{8}
\end{equation*}
$$

where $\xi_{\mathcal{P}}(c)=\frac{1}{2} E_{\mu, \sigma}\left[N_{\mathcal{P}} / n^{*}\right]+\frac{1}{2} E_{\mu, \sigma}\left[n^{*} / N_{\mathcal{P}}\right]$.

- Asymptotic First-Order Efficiency:

$$
\begin{equation*}
\lim _{c \rightarrow 0} \mathrm{E}_{\mu, \sigma}\left[N_{\mathcal{P}} / n^{*}\right]=1 \tag{7}
\end{equation*}
$$

- Asymptotic First-Order Risk Efficiency:

$$
\begin{equation*}
\lim _{c \rightarrow 0} \xi_{\mathcal{P}}(c)=1, \tag{8}
\end{equation*}
$$

where $\xi_{\mathcal{P}}(c)=\frac{1}{2} E_{\mu, \sigma}\left[N_{\mathcal{P}} / n^{*}\right]+\frac{1}{2} E_{\mu, \sigma}\left[n^{*} / N_{\mathcal{P}}\right]$.

- Asymptotic Second-Order Risk Efficiency:

$$
\begin{equation*}
\omega_{\mathcal{P}}(c)=\delta^{2} c+o(c) \text { as } c \rightarrow 0 \tag{9}
\end{equation*}
$$

with δ^{2} coming from (C3).

Illustrations

- What kinds of W_{n} would satisfy (C1)-(C7)?

Illustrations

- What kinds of W_{n} would satisfy (C1)-(C7)?
- Consider W_{n} what involves only

$$
\mathbf{Y}_{n}=\left(X_{1}-X_{n}, X_{2}-X_{n}, \ldots, X_{n-1}-X_{n}\right)
$$

Illustration 0: Sample Standard Deviation

- Robbins (1959): $W_{n} \equiv S_{n}$.

Illustration 0: Sample Standard Deviation

- Robbins (1959): $W_{n} \equiv S_{n}$.
- Stopping rule:

$$
\mathcal{P} \equiv \mathcal{P}_{0}: N_{\mathcal{P}_{0}} \equiv N_{\mathcal{P}_{0}}(c)=\inf \left\{n \geq m(\geq 2): n \geq \sqrt{A / c}\left(S_{n}+n^{-\lambda}\right)\right\}
$$

Illustration 0: Sample Standard Deviation

- Robbins (1959): $W_{n} \equiv S_{n}$.
- Stopping rule:

$$
\mathcal{P} \equiv \mathcal{P}_{0}: N_{\mathcal{P}_{0}} \equiv N_{\mathcal{P}_{0}}(c)=\inf \left\{n \geq m(\geq 2): n \geq \sqrt{A / c}\left(S_{n}+n^{-\lambda}\right)\right\}
$$

- The regret expansion:

$$
\delta^{2}=\frac{1}{2} \Rightarrow \omega_{\mathcal{P}_{0}}(c)=\frac{1}{2} c+o(c) .
$$

Illustration 1: Gini's Mean Difference (GMD)

- Gini $(1914,1921):$

GMD: $\quad g_{n}=\binom{n}{2}^{-1} \Sigma \Sigma_{1 \leq i<j \leq n}\left|X_{i}-X_{j}\right|$.

Illustration 1: Gini's Mean Difference (GMD)

- Gini $(1914,1921)$:

GMD: $\quad g_{n}=\binom{n}{2}^{-1} \Sigma \Sigma_{1 \leq i<j \leq n}\left|X_{i}-X_{j}\right|$.

- $W_{n} \equiv G_{n}=\frac{\sqrt{\pi}}{2} g_{n}$

Illustration 1: Gini's Mean Difference (GMD)

- Gini $(1914,1921)$:

$$
\text { GMD: } \quad g_{n}=\binom{n}{2}^{-1} \Sigma \Sigma_{1 \leq i<j \leq n}\left|X_{i}-X_{j}\right|
$$

- $W_{n} \equiv G_{n}=\frac{\sqrt{\pi}}{2} g_{n}$
- Stopping rule:

$$
\mathcal{P} \equiv \mathcal{P}_{1}: N_{\mathcal{P}_{1}} \equiv N_{\mathcal{P}_{1}}(c)=\inf \left\{n \geq m(\geq 2): n \geq \sqrt{A / c}\left(G_{n}+n^{-\lambda}\right)\right\}
$$

Illustration 1: Gini's Mean Difference (GMD)

- Gini $(1914,1921)$:

$$
\text { GMD: } \quad g_{n}=\binom{n}{2}^{-1} \Sigma \Sigma_{1 \leq i<j \leq n}\left|X_{i}-X_{j}\right| .
$$

- $W_{n} \equiv G_{n}=\frac{\sqrt{\pi}}{2} g_{n}$
- Stopping rule:

$$
\mathcal{P} \equiv \mathcal{P}_{1}: N_{\mathcal{P}_{1}} \equiv N_{\mathcal{P}_{1}}(c)=\inf \left\{n \geq m(\geq 2): n \geq \sqrt{A / c}\left(G_{n}+n^{-\lambda}\right)\right\}
$$

- The regret expansion:

$$
\delta^{2}=\frac{\pi+6 \sqrt{3}-12}{3} \approx 0.511 \Rightarrow \omega_{\mathcal{P}_{1}}(c)=0.511 c+o(c)
$$

Illustration 2: Mean Absolute Deviation (MAD)

- Mean absolute deviation:

$$
\text { MAD : } \quad m_{n}=n^{-1} \sum_{i=1}^{n}\left|X_{i}-\bar{X}_{n}\right|
$$

Illustration 2: Mean Absolute Deviation (MAD)

- Mean absolute deviation:

$$
\text { MAD : } \quad m_{n}=n^{-1} \sum_{i=1}^{n}\left|X_{i}-\bar{X}_{n}\right| .
$$

- $W_{n} \equiv M_{n}=\sqrt{\frac{\pi n}{2(n-1)}} m_{n}$

Illustration 2: Mean Absolute Deviation (MAD)

- Mean absolute deviation:

$$
\text { MAD : } \quad m_{n}=n^{-1} \sum_{i=1}^{n}\left|X_{i}-\bar{X}_{n}\right| .
$$

- $W_{n} \equiv M_{n}=\sqrt{\frac{\pi n}{2(n-1)}} m_{n}$
- Stopping rule:

$$
\mathcal{P} \equiv \mathcal{P}_{2}: N_{\mathcal{P}_{2}} \equiv N_{\mathcal{P}_{2}}(c)=\inf \left\{n \geq m(\geq 2): n \geq \sqrt{A / c}\left(M_{n}+n^{-\lambda}\right)\right\}
$$

Illustration 2: Mean Absolute Deviation (MAD)

- Mean absolute deviation:

$$
\text { MAD : } \quad m_{n}=n^{-1} \sum_{i=1}^{n}\left|X_{i}-\bar{X}_{n}\right|
$$

- $W_{n} \equiv M_{n}=\sqrt{\frac{\pi n}{2(n-1)}} m_{n}$
- Stopping rule:

$$
\mathcal{P} \equiv \mathcal{P}_{2}: N_{\mathcal{P}_{2}} \equiv N_{\mathcal{P}_{2}}(c)=\inf \left\{n \geq m(\geq 2): n \geq \sqrt{A / c}\left(M_{n}+n^{-\lambda}\right)\right\}
$$

- The regret expansion:

$$
\delta^{2}=\frac{\pi-2}{2} \approx 0.571 \Rightarrow \omega_{\mathcal{P}_{2}}(c)=0.571 c+o(c)
$$

Table 1. Simulations from $N(5,4)$ with $A=100, m=10, \lambda=2$ under 1000 runs implementing $\mathcal{P}_{0}-\mathcal{P}_{2}$

n^{*}	$100 c$	\mathcal{P}	\bar{n}	$s(\bar{n})$	$\widehat{\xi}$	$s(\widehat{\xi})$	δ^{2}	$\widehat{\omega} / c$
50	16	\mathcal{P}_{0}	50.012	0.1671	0.9880	0.003340	0.5	0.593131
		\mathcal{P}_{1}	50.313	0.1703	0.9879	0.003377	0.511	0.612431
		\mathcal{P}_{2}	50.259	0.1778	0.9872	0.003339	0.571	0.666431
100	4	\mathcal{P}_{0}	99.955	0.2408	0.9932	0.002404	0.5	0.599650
		\mathcal{P}_{1}	100.335	0.2347	0.9943	0.002306	0.511	0.561200
		\mathcal{P}_{2}	100.332	0.2495	0.9939	0.002327	0.571	0.636125
200	1	\mathcal{P}_{0}	200.012	0.3325	0.9969	0.001660	0.5	0.561100
		\mathcal{P}_{1}	200.255	0.3380	0.9971	0.001661	0.511	0.580400
		\mathcal{P}_{2}	200.026	0.3562	0.9962	0.001659	0.571	0.643800
400	0.25	\mathcal{P}_{0}	399.931	0.4588	0.9983	0.001146	0.5	0.531200
		\mathcal{P}_{1}	400.282	0.4508	0.9984	0.001114	0.511	0.514000
		\mathcal{P}_{2}	400.232	0.4873	0.9985	0.001145	0.571	0.598800

Accelerated Sequential MRPE Saving Sampling Operations

- Given the pilot sample size $m \geq 2,0<\rho \leq 1$ and $k \geq 1$, an integer, consider the following stopping rule:

$$
T \equiv T(c)=\inf \left\{n \geq 0: m+k n \geq \rho \sqrt{A / c}\left[W_{m+k n}+(m+k n)^{-\lambda}\right]\right\}
$$

Accelerated Sequential MRPE Saving Sampling Operations

- Given the pilot sample size $m \geq 2,0<\rho \leq 1$ and $k \geq 1$, an integer, consider the following stopping rule:

$$
T \equiv T(c)=\inf \left\{n \geq 0: m+k n \geq \rho \sqrt{A / c}\left[W_{m+k n}+(m+k n)^{-\lambda}\right]\right\}
$$

- The final sample size is then given by

$$
N \equiv N(c)=\left\lfloor\rho^{-1}(m+k T)\right\rfloor+1,
$$

where $\lfloor u\rfloor$ means the largest integer smaller than u.

Accelerated Sequential MRPE Saving Sampling Operations

- Given the pilot sample size $m \geq 2,0<\rho \leq 1$ and $k \geq 1$, an integer, consider the following stopping rule:

$$
T \equiv T(c)=\inf \left\{n \geq 0: m+k n \geq \rho \sqrt{A / c}\left[W_{m+k n}+(m+k n)^{-\lambda}\right]\right\}
$$

- The final sample size is then given by

$$
N \equiv N(c)=\left\lfloor\rho^{-1}(m+k T)\right\rfloor+1,
$$

where $\lfloor u\rfloor$ means the largest integer smaller than u.

- Operational time reduced by approximately $100\left(1-k^{-1} \rho\right) \%$.

Selected References

- Gini, C. (1914). L'Ammontare la Composizione della Ricchezza delle Nazioni, Boca, Torino.
- Gini, C. (1921). Measurement of Inequality of Incomes, Economic Journal 31: 124-126.
- Hu, J. and Mukhopadhyay, N. (2019) Second-Order Asymptotics in a Class of Purely Sequential Minimum Risk Point Estimation (MRPE) Methodologies, Japanese Journal of Statistics and Data Science 2: 81-104.
- Mukhopadhyay, N. (1996). An Alternative Formulation of Accelerated Sequential Procedures with Applications to Parametric and Nonparametric Estimation, Sequential Analysis 15: 253-269.
- Mukhopadhyay, N., and Hu, J. (2017). Confidence Intervals and Point Estimators for a Normal Mean Under Purely Sequential Strategies Involving Gini's Mean Difference and Mean Absolute Deviation, Sequential Analysis 36: 210-239.
- Mukhopadhyay, N. and Solanky, T. K. S. (1991). Second Order Properties of Accelerated Stopping Times with Applications in Sequential Estimation, Sequential Analysis 10: 99-123.
- Robbins, H. (1959). Sequential Estimation of the Mean of a Normal Population, in Probability and Statistics, H. Cramér volume, Ulf Grenander, ed., pp. 235-245, Uppsala: Almquist \& Wiksell.
- Starr, N. (1966). On the Asymptotic Efficiency of a Sequential Procedure for Estimating the Mean, Annals of Mathematical Statistics 37: 1173-1185.
- Stein, C. (1945). A Two Sample Test for a Linear Hypothesis Whose Power Is Independent of the Variance, Annals of Mathematical Statistics 16: 243-258.
- Stein, C. (1949). Some Problems in Sequential Estimation (Abstract), Econometrica 17: 77-78.

