
1. Introduction 2. Sequential MRPE 3. Illustrations 4. Simulated Performances 5. Future Work Reference

A Class of Purely Sequential Minimum Risk Point
Estimation Methodologies with Second-Order

Properties

Jun Hu
(Joint work with Prof. Nitis Mukhopadhyay)

Department of Mathematics and Statistics
University of Vermont, Burlington

jun.hu@uvm.edu

June 12, 2019

QPRC 2019 Jun Hu, UVM



1. Introduction 2. Sequential MRPE 3. Illustrations 4. Simulated Performances 5. Future Work Reference

Outline

1. Introduction
1.1. Sequential Analysis
1.2. Minimum Risk Point Estimation (MRPE)
1.3. Estimators for σ

2. Sequential MRPE
2.1 Methodologies
2.2 Asymptotics

3. Illustrations

4. Simulated Performances

5. Future Work

Selected Reference

QPRC 2019 Jun Hu, UVM



1. Introduction 2. Sequential MRPE 3. Illustrations 4. Simulated Performances 5. Future Work Reference

1.1. Sequential Analysis

I Sequential analysis is founded and developed by Abraham Wald
during World War II.

I The sample size is not predetermined.

I One observation is recorded at a time successively until termination.
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1.2. Minimum Risk Point Estimation (MRPE)

I Originally formulated in Robbins (1959).

I Assuming X1, ...,Xn
i .i .d .∼ N(µ, σ2), with µ and σ2 both unknown.

I Loss function:

Ln ≡ Ln(µ,X n) = A(X n − µ)2 + cn, (1)

where A(> 0) and c(> 0) are both known.

I Risk function:

Rn(c) ≡ Eµ,σ[Ln(µ,X n)] = Aσ2n−1 + cn. (2)
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1.2. Minimum Risk Point Estimation (MRPE)

I Optimal fixed sample size:

n∗ ≡ n(c) = σ
√
A/c. (3)

I Minimum risk:

Rn∗(c) = 2cn∗. (4)

I NO fixed-sample-size procedure.
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1.2. Minimum Risk Point Estimation (MRPE)

Solutions

I Two-stage: Stein (1945,1949)

I Purely sequential: Robbins (1959), Starr (1966)

I Three-stage: Mukhopadhyay (1990)

I Accelerated sequential: Mukhopadhyay and Solanky (1991),
Mukhopadhyay (1996)

QPRC 2019 Jun Hu, UVM



1. Introduction 2. Sequential MRPE 3. Illustrations 4. Simulated Performances 5. Future Work Reference

1.2. Minimum Risk Point Estimation (MRPE)

Solutions

I Two-stage: Stein (1945,1949)

I Purely sequential: Robbins (1959), Starr (1966)

I Three-stage: Mukhopadhyay (1990)

I Accelerated sequential: Mukhopadhyay and Solanky (1991),
Mukhopadhyay (1996)

QPRC 2019 Jun Hu, UVM



1. Introduction 2. Sequential MRPE 3. Illustrations 4. Simulated Performances 5. Future Work Reference

1.3. Estimators for σ

I σ is unknown.

I A general arbitrary estimator, assumed positive w.p.1.,

Wn ≡Wn(X1, ...,Xn).
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1.3. Estimators for σ

Conditions on Wn

C1 Independence: X n and {Wk ; 2 ≤ k ≤ n} are distributed
independently for all n ≥ 2.

C2 Convergence in probability : Wn
Pµ,σ→ σ as n→∞.

C3 Asymptotic normality :
√
n(σ−1Wn − 1)

L→ N(0, δ2) as n→∞.

C4 Uniform continuity in probability : For every ε > 0, there exists a
large ν and small γ > 0 for which ∀n ≥ ν,

Pµ,σ

(
max

0≤k≤nγ
|Wn+k −Wn| ≥ ε

)
< ε.

QPRC 2019 Jun Hu, UVM
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1.3. Estimators for σ

C5 Kolmogorov’s inequality : For every ε > 0, and some 2 ≤ n1 ≤ n2,
with r ≥ 2,

Pµ,σ

(
max

n1≤n≤n2
|Wn − σ| ≥ ε

)
≤ ε−rEµ,σ[|Wn1 − σ|r ].

C6 Order of central absolute moments: For n ≥ 2 and r ≥ 2,

Eµ,σ[|Wn − σ|r ] = O(n−r/2).

C7 Wiener’s condition: Eµ,σ[supn≥2Wn] <∞.

QPRC 2019 Jun Hu, UVM



1. Introduction 2. Sequential MRPE 3. Illustrations 4. Simulated Performances 5. Future Work Reference

1.3. Estimators for σ

C5 Kolmogorov’s inequality : For every ε > 0, and some 2 ≤ n1 ≤ n2,
with r ≥ 2,

Pµ,σ

(
max

n1≤n≤n2
|Wn − σ| ≥ ε

)
≤ ε−rEµ,σ[|Wn1 − σ|r ].

C6 Order of central absolute moments: For n ≥ 2 and r ≥ 2,

Eµ,σ[|Wn − σ|r ] = O(n−r/2).

C7 Wiener’s condition: Eµ,σ[supn≥2Wn] <∞.

QPRC 2019 Jun Hu, UVM



1. Introduction 2. Sequential MRPE 3. Illustrations 4. Simulated Performances 5. Future Work Reference

1.3. Estimators for σ

C5 Kolmogorov’s inequality : For every ε > 0, and some 2 ≤ n1 ≤ n2,
with r ≥ 2,

Pµ,σ

(
max

n1≤n≤n2
|Wn − σ| ≥ ε

)
≤ ε−rEµ,σ[|Wn1 − σ|r ].

C6 Order of central absolute moments: For n ≥ 2 and r ≥ 2,

Eµ,σ[|Wn − σ|r ] = O(n−r/2).

C7 Wiener’s condition: Eµ,σ[supn≥2Wn] <∞.

QPRC 2019 Jun Hu, UVM



1. Introduction 2. Sequential MRPE 3. Illustrations 4. Simulated Performances 5. Future Work Reference

2.1 Methodologies

I Hu and Mukhopadhyay (2019)

I Stopping rules:

P : NP ≡ NP(c) = inf{n ≥ m(≥ 2) : n ≥
√
A/c(Wn + n−λ)}, (5)

where λ(> 1
2) is held fixed.

I Pµ,σ{NP <∞} = 1 and NP ↑ ∞ w.p.1 as c ↓ 0.
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2.1 Methodologies

I Upon {NP ,X1, ...,Xm,Xm+1, ...,XNP}:

XNP ≡ N−1P ΣNP
j=1Xj . (6)
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2.1 Methodologies

I Risk Efficiency:

ξP(c) =
RNP (c)

Rn∗(c)
=

1

2
Eµ,σ[NP/n

∗] +
1

2
Eµ,σ[n∗/NP ];

I Regret:

ωP(c) = RNP (c)− Rn∗(c) = cEµ,σ[(NP − n∗)2/NP ].

QPRC 2019 Jun Hu, UVM



1. Introduction 2. Sequential MRPE 3. Illustrations 4. Simulated Performances 5. Future Work Reference

2.1 Methodologies

I Risk Efficiency:

ξP(c) =
RNP (c)

Rn∗(c)
=

1

2
Eµ,σ[NP/n

∗] +
1

2
Eµ,σ[n∗/NP ];

I Regret:

ωP(c) = RNP (c)− Rn∗(c) = cEµ,σ[(NP − n∗)2/NP ].

QPRC 2019 Jun Hu, UVM



1. Introduction 2. Sequential MRPE 3. Illustrations 4. Simulated Performances 5. Future Work Reference

2.2 Asymptotics

I Asymptotic First-Order Efficiency:

lim
c→0

Eµ,σ[NP/n
∗] = 1. (7)

I Asymptotic First-Order Risk Efficiency:

lim
c→0

ξP(c) = 1, (8)

where ξP(c) = 1
2Eµ,σ[NP/n

∗] + 1
2Eµ,σ[n∗/NP ].

I Asymptotic Second-Order Risk Efficiency:

ωP(c) = δ2c + o(c) as c → 0, (9)

with δ2 coming from (C3).

QPRC 2019 Jun Hu, UVM
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Illustrations

I What kinds of Wn would satisfy (C1)-(C7)?

I Consider Wn what involves only

Yn = (X1 − Xn,X2 − Xn, ...,Xn−1 − Xn).
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Illustration 0: Sample Standard Deviation

I Robbins (1959): Wn ≡ Sn.

I Stopping rule:

P ≡ P0 : NP0 ≡ NP0(c) = inf{n ≥ m(≥ 2) : n ≥
√
A/c(Sn + n−λ)}.

I The regret expansion:

δ2 =
1

2
⇒ ωP0(c) =

1

2
c + o(c).
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Illustration 1: Gini’s Mean Difference (GMD)
I Gini (1914,1921):

GMD: gn =

(
n

2

)−1
ΣΣ1≤i<j≤n|Xi − Xj |.

I Wn ≡ Gn =
√
π
2 gn

I Stopping rule:

P ≡ P1 : NP1 ≡ NP1(c) = inf{n ≥ m(≥ 2) : n ≥
√
A/c(Gn +n−λ)}.

I The regret expansion:

δ2 =
π + 6

√
3− 12

3
≈ 0.511⇒ ωP1(c) = 0.511c + o(c).

QPRC 2019 Jun Hu, UVM
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Illustration 2: Mean Absolute Deviation (MAD)

I Mean absolute deviation:

MAD : mn = n−1Σn
i=1|Xi − X n|.

I Wn ≡ Mn =
√

πn
2(n−1)mn

I Stopping rule:

P ≡ P2 : NP2 ≡ NP2(c) = inf{n ≥ m(≥ 2) : n ≥
√
A/c(Mn+n−λ)}.

I The regret expansion:

δ2 =
π − 2

2
≈ 0.571⇒ ωP2(c) = 0.571c + o(c).
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Accelerated Sequential MRPE Saving Sampling Operations

I Given the pilot sample size m ≥ 2, 0 < ρ ≤ 1 and k ≥ 1, an integer,
consider the following stopping rule:

T ≡ T (c) = inf
{
n ≥ 0 : m + kn ≥ ρ

√
A/c

[
Wm+kn + (m + kn)−λ

]}
.

I The final sample size is then given by

N ≡ N(c) =
⌊
ρ−1(m + kT )

⌋
+ 1,

where buc means the largest integer smaller than u.

I Operational time reduced by approximately 100(1− k−1ρ)%.
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