	1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
•0	0 000 000	000	0000	0	0	0000

A Class of Purely Sequential Minimum Risk Point Estimation Methodologies with Second-Order Properties

Jun Hu (Joint work with Prof. Nitis Mukhopadhyay)

Department of Mathematics and Statistics University of Vermont, Burlington

jun.hu@uvm.edu

June 12, 2019

	1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
0•	0 000 000	000	0000	0	0	0000

Outline

1. Introduction

- 1.1. Sequential Analysis
- 1.2. Minimum Risk Point Estimation (MRPE)
- 1.3. Estimators for σ

2. Sequential MRPE

2.1 Methodologies2.2 Asymptotics

3. Illustrations

4. Simulated Performances

5. Future Work

Selected Reference

	1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference		
00	• 000 000	000	0000	0	0	0000		
1	1.1. Sequential Analysis							

 Sequential analysis is founded and developed by Abraham Wald during World War II.

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 回 ● ● ●

	1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference		
00	• 000 000	000	0000	0	0	0000		
1	1.1. Sequential Analysis							

 Sequential analysis is founded and developed by Abraham Wald during World War II.

• The sample size is not predetermined.

	1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference		
00	• 000 000	000	0000	0	0	0000		
1	1.1. Sequential Analysis							

 Sequential analysis is founded and developed by Abraham Wald during World War II.

- The sample size is not predetermined.
- One observation is recorded at a time successively until termination.

▲ 글 ▶ ▲ 글 ▶

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference		
00 0 000 000	000	0000	0	0	0000		
1.2. Minimum Risk Point Estimation (MRPE)							

• Originally formulated in Robbins (1959).

QPRC 2019

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference		
00 0 000 000	000	0000	0	0	0000		
1.2. Minimum Risk Point Estimation (MRPE)							

- Originally formulated in Robbins (1959).
- Assuming $X_1, ..., X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$, with μ and σ^2 both unknown.

- Originally formulated in Robbins (1959).
- Assuming $X_1, ..., X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$, with μ and σ^2 both unknown.
- Loss function:

$$L_n \equiv L_n(\mu, \overline{X}_n) = A(\overline{X}_n - \mu)^2 + cn, \qquad (1)$$

where A(>0) and c(>0) are both known.

・ロト ・ 同ト ・ ヨト ・ ヨト

- Originally formulated in Robbins (1959).
- Assuming $X_1, ..., X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$, with μ and σ^2 both unknown.
- Loss function:

$$L_n \equiv L_n(\mu, \overline{X}_n) = A(\overline{X}_n - \mu)^2 + cn, \qquad (1)$$

where A(>0) and c(>0) are both known.

Risk function:

$$R_n(c) \equiv E_{\mu,\sigma}[L_n(\mu, \overline{X}_n)] = A\sigma^2 n^{-1} + cn.$$
(2)

Jun Hu, UVM

< ロ > < 同 > < 三 > < 三 >

	1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00	0 000 000	000	0000	0	0	0000

Optimal fixed sample size:

$$n^* \equiv n(c) = \sigma \sqrt{A/c}.$$
 (3)

Jun Hu, UVM

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
	000	0000	0	0	0000

1.2. Minimum Risk Point Estimation (MRPE)

Optimal fixed sample size:

$$n^* \equiv n(c) = \sigma \sqrt{A/c}.$$
 (3)

Minimum risk:

$$R_{n^*}(c) = 2cn^*.$$
 (4)

Jun Hu, UVM

1. h	ntroduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0	0	000	0000	0	0	0000

Optimal fixed sample size:

$$n^* \equiv n(c) = \sigma \sqrt{A/c}.$$
 (3)

Minimum risk:

$$R_{n^*}(c) = 2cn^*.$$
 (4)

NO fixed-sample-size procedure.

4 3 5 4 3 5

	1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00	0 000	000	0000	0	0	0000

Solutions

- Two-stage: Stein (1945,1949)
- Purely sequential: Robbins (1959), Starr (1966)
- Three-stage: Mukhopadhyay (1990)
- Accelerated sequential: Mukhopadhyay and Solanky (1991), Mukhopadhyay (1996)

伺 ト イ ヨ ト イ ヨ ト

	1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00	0 000	000	0000	0	0	0000

Solutions

- Two-stage: Stein (1945,1949)
- Purely sequential: Robbins (1959), Starr (1966)
- Three-stage: Mukhopadhyay (1990)
- Accelerated sequential: Mukhopadhyay and Solanky (1991), Mukhopadhyay (1996)

伺 ト イ ヨ ト イ ヨ ト

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0 000 •00	000	0000	0	0	0000

- σ is unknown.
- ► A general arbitrary estimator, assumed positive w.p.1.,

$$W_n \equiv W_n(X_1,...,X_n).$$

| 4 同 ト 4 三 ト 4 三 ト

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0 000 000	000	0000	0	0	0000

Conditions on W_n

C1 Independence: \overline{X}_n and $\{W_k; 2 \le k \le n\}$ are distributed independently for all $n \ge 2$.

QPRC 2019

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
	000	0000	0	0	0000

Conditions on W_n

- C1 Independence: \overline{X}_n and $\{W_k; 2 \le k \le n\}$ are distributed independently for all $n \ge 2$.
- C2 Convergence in probability: $W_n \stackrel{P_{\mu,\sigma}}{\to} \sigma$ as $n \to \infty$.

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
	000	0000	0	0	0000

Conditions on W_n

- C1 Independence: \overline{X}_n and $\{W_k; 2 \le k \le n\}$ are distributed independently for all $n \ge 2$.
- C2 Convergence in probability: $W_n \stackrel{P_{\mu,\sigma}}{\to} \sigma$ as $n \to \infty$.
- C3 Asymptotic normality: $\sqrt{n}(\sigma^{-1}W_n 1) \xrightarrow{\mathscr{L}} N(0, \delta^2)$ as $n \to \infty$.

0 0	0000	0	0	0000

Conditions on W_n

- C1 Independence: \overline{X}_n and $\{W_k; 2 \le k \le n\}$ are distributed independently for all $n \ge 2$.
- C2 Convergence in probability: $W_n \stackrel{P_{\mu,\sigma}}{\rightarrow} \sigma$ as $n \rightarrow \infty$.
- C3 Asymptotic normality: $\sqrt{n}(\sigma^{-1}W_n 1) \xrightarrow{\mathscr{L}} N(0, \delta^2)$ as $n \to \infty$.
- C4 Uniform continuity in probability: For every $\varepsilon > 0$, there exists a large ν and small $\gamma > 0$ for which $\forall n \ge \nu$,

$$P_{\mu,\sigma}\left(\max_{0\leq k\leq n\gamma}|W_{n+k}-W_n|\geq \varepsilon\right)<\varepsilon.$$

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0 000 000	000	0000	0	0	0000
1.3. Estimators for σ					

C5 *Kolmogorov's inequality*: For every $\varepsilon > 0$, and some $2 \le n_1 \le n_2$, with $r \ge 2$,

$$P_{\mu,\sigma}\left(\max_{n_1\leq n\leq n_2}|W_n-\sigma|\geq \varepsilon\right)\leq \varepsilon^{-r}E_{\mu,\sigma}[|W_{n_1}-\sigma|^r].$$

< ロ > < 同 > < 三 > < 三 >

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0 000 000	000	0000	0	0	0000
1.3. Estimators for σ					

C5 *Kolmogorov's inequality*: For every $\varepsilon > 0$, and some $2 \le n_1 \le n_2$, with $r \ge 2$,

$$P_{\mu,\sigma}\left(\max_{n_1\leq n\leq n_2}|W_n-\sigma|\geq \varepsilon\right)\leq \varepsilon^{-r}E_{\mu,\sigma}[|W_{n_1}-\sigma|^r].$$

C6 Order of central absolute moments: For $n \ge 2$ and $r \ge 2$,

$$E_{\mu,\sigma}[|W_n-\sigma|^r]=O(n^{-r/2}).$$

< ロ > < 同 > < 回 > < 回 >

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference	
00 0 000 000	000	0000	0	0	0000	
1.2 Ectimators for	~					

C5 *Kolmogorov's inequality*: For every $\varepsilon > 0$, and some $2 \le n_1 \le n_2$, with $r \ge 2$,

$$P_{\mu,\sigma}\left(\max_{n_1\leq n\leq n_2}|W_n-\sigma|\geq \varepsilon\right)\leq \varepsilon^{-r}E_{\mu,\sigma}[|W_{n_1}-\sigma|^r].$$

C6 Order of central absolute moments: For $n \ge 2$ and $r \ge 2$,

$$E_{\mu,\sigma}[|W_n-\sigma|^r]=O(n^{-r/2}).$$

C7 Wiener's condition: $E_{\mu,\sigma}[\sup_{n\geq 2} W_n] < \infty$.

- 4 同 6 4 日 6 4 日 6

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0 000 000	• 00 0	0000	0	0	0000
2.1 Methodologies					

► Hu and Mukhopadhyay (2019)

QPRC 2019

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0 000 000	•00 0	0000	0	0	0000
2.1 Methodologies					

- ► Hu and Mukhopadhyay (2019)
- Stopping rules:

$$\mathcal{P}: N_{\mathcal{P}} \equiv N_{\mathcal{P}}(c) = \inf\{n \ge m(\ge 2) : n \ge \sqrt{A/c}(W_n + n^{-\lambda})\}, \quad (5)$$

where $\lambda(>\frac{1}{2})$ is held fixed.

< ロ > < 同 > < 三 > < 三 >

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0 000 000	•00 0	0000	0	0	0000
2.1 Methodologies					

- Hu and Mukhopadhyay (2019)
- Stopping rules:

$$\mathcal{P}: N_{\mathcal{P}} \equiv N_{\mathcal{P}}(c) = \inf\{n \ge m(\ge 2) : n \ge \sqrt{A/c}(W_n + n^{-\lambda})\}, \quad (5)$$

where $\lambda(>\frac{1}{2})$ is held fixed.

• $P_{\mu,\sigma}\{N_{\mathcal{P}} < \infty\} = 1$ and $N_{\mathcal{P}} \uparrow \infty$ w.p.1 as $c \downarrow 0$.

< ロ > < 同 > < 回 > < 回 >

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0 000 000	000 0	0000	0	0	0000

2.1 Methodologies

• Upon
$$\{N_{\mathcal{P}}, X_1, ..., X_m, X_{m+1}, ..., X_{N_{\mathcal{P}}}\}$$
:

$$\overline{X}_{N_{\mathcal{P}}} \equiv N_{\mathcal{P}}^{-1} \Sigma_{j=1}^{N_{\mathcal{P}}} X_j.$$
(6)

・ロト ・四ト ・ヨト ・ヨト

Jun Hu, UVM

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0 000 000	00● ○	0000	0	0	0000

2.1 Methodologies

Risk Efficiency:

$$\xi_{\mathcal{P}}(c) = \frac{R_{N_{\mathcal{P}}}(c)}{R_{n^*}(c)} = \frac{1}{2}E_{\mu,\sigma}[N_{\mathcal{P}}/n^*] + \frac{1}{2}E_{\mu,\sigma}[n^*/N_{\mathcal{P}}];$$

QPRC 2019

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0 000 000	000 0	0000	0	0	0000

2.1 Methodologies

Risk Efficiency:

$$\xi_{\mathcal{P}}(c) = \frac{R_{N_{\mathcal{P}}}(c)}{R_{n^*}(c)} = \frac{1}{2}E_{\mu,\sigma}[N_{\mathcal{P}}/n^*] + \frac{1}{2}E_{\mu,\sigma}[n^*/N_{\mathcal{P}}];$$

► Regret:

$$\omega_{\mathcal{P}}(c) = R_{N_{\mathcal{P}}}(c) - R_{n^*}(c) = cE_{\mu,\sigma}[(N_{\mathcal{P}} - n^*)^2/N_{\mathcal{P}}].$$

QPRC 2019

Asymptotic First-Order Efficiency:

$$\lim_{c \to 0} \mathsf{E}_{\mu,\sigma}[N_{\mathcal{P}}/n^*] = 1. \tag{7}$$

・ロト・日本・日本・日本・日本・日本

QPRC 2019

2.2 Asymptotics

Asymptotic First-Order Efficiency:

$$\lim_{c \to 0} \mathsf{E}_{\mu,\sigma}[N_{\mathcal{P}}/n^*] = 1. \tag{7}$$

Asymptotic First-Order Risk Efficiency:

$$\lim_{c \to 0} \xi_{\mathcal{P}}(c) = 1, \tag{8}$$

< ロ > < 同 > < 三 > < 三 >

where $\xi_{\mathcal{P}}(c) = \frac{1}{2}E_{\mu,\sigma}[N_{\mathcal{P}}/n^*] + \frac{1}{2}E_{\mu,\sigma}[n^*/N_{\mathcal{P}}].$

2.2 Asymptotics

Asymptotic First-Order Efficiency:

$$\lim_{c \to 0} \mathsf{E}_{\mu,\sigma}[N_{\mathcal{P}}/n^*] = 1. \tag{7}$$

Asymptotic First-Order Risk Efficiency:

$$\lim_{c \to 0} \xi_{\mathcal{P}}(c) = 1, \tag{8}$$

where $\xi_{\mathcal{P}}(c) = \frac{1}{2} E_{\mu,\sigma}[N_{\mathcal{P}}/n^*] + \frac{1}{2} E_{\mu,\sigma}[n^*/N_{\mathcal{P}}].$

Asymptotic Second-Order Risk Efficiency:

$$\omega_{\mathcal{P}}(c) = \delta^2 c + o(c) \text{ as } c \to 0, \tag{9}$$

with δ^2 coming from (C3).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0 0 000	000	●000	0	0	0000

Illustrations

▶ What kinds of *W_n* would satisfy (C1)-(C7)?

QPRC 2019

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0 000 000	000	•000	0	0	0000

Illustrations

- What kinds of W_n would satisfy (C1)-(C7)?
- Consider W_n what involves only

$$\mathbf{Y}_n = (X_1 - X_n, X_2 - X_n, ..., X_{n-1} - X_n).$$

Jun Hu, UVM

< 3 > 4 3 >

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference	
00 0	000	0000	0	0	0000	
000	0					

Illustration 0: Sample Standard Deviation

```
• Robbins (1959): W_n \equiv S_n.
```


QPRC 2019

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0	000	0000	0	0	0000

Illustration 0: Sample Standard Deviation

- Robbins (1959): $W_n \equiv S_n$.
- Stopping rule:

$$\mathcal{P} \equiv \mathcal{P}_0 : N_{\mathcal{P}_0} \equiv N_{\mathcal{P}_0}(c) = \inf\{n \ge m (\ge 2) : n \ge \sqrt{A/c}(S_n + n^{-\lambda})\}.$$

伺 ト イヨト イヨト

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0	000	0000	0	0	0000

Illustration 0: Sample Standard Deviation

- Robbins (1959): $W_n \equiv S_n$.
- Stopping rule:

$$\mathcal{P} \equiv \mathcal{P}_0 : N_{\mathcal{P}_0} \equiv N_{\mathcal{P}_0}(c) = \inf\{n \ge m (\ge 2) : n \ge \sqrt{A/c}(S_n + n^{-\lambda})\}.$$

The regret expansion:

$$\delta^2 = rac{1}{2} \Rightarrow \omega_{\mathcal{P}_0}(c) = rac{1}{2}c + o(c).$$

Jun Hu, UVM

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0	000	0000	0	0	0000

► Gini (1914,1921):

GMD:
$$g_n = {\binom{n}{2}}^{-1} \Sigma \Sigma_{1 \le i < j \le n} |X_i - X_j|.$$

伺 ト イヨト イヨト

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0	000	0000	0	0	0000

► Gini (1914,1921):

GMD:
$$g_n = {\binom{n}{2}}^{-1} \Sigma \Sigma_{1 \le i < j \le n} |X_i - X_j|.$$

•
$$W_n \equiv G_n = \frac{\sqrt{\pi}}{2}g_n$$

Jun Hu, UVM

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0	000	0000	0	0	0000

► Gini (1914,1921):

GMD:
$$g_n = {n \choose 2}^{-1} \Sigma \Sigma_{1 \le i < j \le n} |X_i - X_j|.$$

•
$$W_n \equiv G_n = \frac{\sqrt{\pi}}{2}g_n$$

Stopping rule:

$$\mathcal{P} \equiv \mathcal{P}_1 : N_{\mathcal{P}_1} \equiv N_{\mathcal{P}_1}(c) = \inf\{n \ge m (\ge 2) : n \ge \sqrt{A/c} (G_n + n^{-\lambda})\}.$$

Jun Hu, UVM

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0 0 000	000	0000	0	0	0000

► Gini (1914,1921):

GMD:
$$g_n = {n \choose 2}^{-1} \Sigma \Sigma_{1 \le i < j \le n} |X_i - X_j|.$$

- $W_n \equiv G_n = \frac{\sqrt{\pi}}{2}g_n$
- Stopping rule:

$$\mathcal{P} \equiv \mathcal{P}_1 : N_{\mathcal{P}_1} \equiv N_{\mathcal{P}_1}(c) = \inf\{n \ge m (\ge 2) : n \ge \sqrt{A/c} (G_n + n^{-\lambda})\}.$$

The regret expansion:

$$\delta^2=rac{\pi+6\sqrt{3}-12}{3}pprox 0.511\Rightarrow \omega_{\mathcal{P}_1}(c)=0.511c+o(c).$$

伺 ト イヨト イヨト

Mean absolute deviation:

MAD:
$$m_n = n^{-1} \sum_{i=1}^n |X_i - \overline{X}_n|.$$

ヘロト ヘヨト ヘヨト

Mean absolute deviation:

MAD:
$$m_n = n^{-1} \sum_{i=1}^n |X_i - \overline{X}_n|.$$

•
$$W_n \equiv M_n = \sqrt{\frac{\pi n}{2(n-1)}} m_n$$

ヘロト ヘヨト ヘヨト

Mean absolute deviation:

MAD:
$$m_n = n^{-1} \sum_{i=1}^n |X_i - \overline{X}_n|.$$

•
$$W_n \equiv M_n = \sqrt{\frac{\pi n}{2(n-1)}} m_n$$

Stopping rule:

$$\mathcal{P} \equiv \mathcal{P}_2 : N_{\mathcal{P}_2} \equiv N_{\mathcal{P}_2}(c) = \inf\{n \ge m (\ge 2) : n \ge \sqrt{A/c} (M_n + n^{-\lambda})\}.$$

< ロ > < 同 > < 三 > < 三 >

Mean absolute deviation:

MAD:
$$m_n = n^{-1} \sum_{i=1}^n |X_i - \overline{X}_n|.$$

•
$$W_n \equiv M_n = \sqrt{\frac{\pi n}{2(n-1)}} m_n$$

Stopping rule:

$$\mathcal{P} \equiv \mathcal{P}_2 : N_{\mathcal{P}_2} \equiv N_{\mathcal{P}_2}(c) = \inf\{n \ge m (\ge 2) : n \ge \sqrt{A/c} (M_n + n^{-\lambda})\}.$$

The regret expansion:

$$\delta^2=rac{\pi-2}{2}pprox 0.571\Rightarrow \omega_{\mathcal{P}_2}(c)=0.571c+o(c).$$

< ロ > < 同 > < 回 > < 回 >

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0 000 000	000	0000	•	0	0000

	under 1000 runs implementing $\mathcal{P}_0 - \mathcal{P}_2$								
n^*	100c	\mathcal{P}	\overline{n}	$s\left(\overline{n}\right)$	$\widehat{\xi}$	$s(\widehat{\xi})$	δ^2	$\widehat{\omega}/c$	
50	16	\mathcal{P}_0	50.012	0.1671	0.9880	0.003340	0.5	0.593131	
		\mathcal{P}_1	50.313	0.1703	0.9879	0.003377	0.511	0.612431	
		\mathcal{P}_2	50.259	0.1778	0.9872	0.003339	0.571	0.666431	
100	4	\mathcal{P}_0	99.955	0.2408	0.9932	0.002404	0.5	0.599650	
		\mathcal{P}_1	100.335	0.2347	0.9943	0.002306	0.511	0.561200	
		\mathcal{P}_2	100.332	0.2495	0.9939	0.002327	0.571	0.636125	
200	1	\mathcal{P}_0	200.012	0.3325	0.9969	0.001660	0.5	0.561100	
		\mathcal{P}_1	200.255	0.3380	0.9971	0.001661	0.511	0.580400	
		\mathcal{P}_2	200.026	0.3562	0.9962	0.001659	0.571	0.643800	
400	0.25	\mathcal{P}_0	399.931	0.4588	0.9983	0.001146	0.5	0.531200	
		\mathcal{P}_1	400.282	0.4508	0.9984	0.001114	0.511	0.514000	
		\mathcal{P}_2	400.232	0.4873	0.9985	0.001145	0.571	0.598800	

Table 1. Simulations from N(5, 4) with $A = 100, m = 10, \lambda = 2$ under 1000 runs implementing $\mathcal{P}_0 - \mathcal{P}_2$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0	000	0000	0	•	0000

Accelerated Sequential MRPE Saving Sampling Operations

► Given the pilot sample size m ≥ 2, 0 < ρ ≤ 1 and k ≥ 1, an integer, consider the following stopping rule:</p>

$$T \equiv T(c) = \inf \left\{ n \ge 0 : m + kn \ge \rho \sqrt{A/c} \left[W_{m+kn} + (m+kn)^{-\lambda} \right] \right\}$$

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0 000 000	000	0000	0	•	0000

Accelerated Sequential MRPE Saving Sampling Operations

► Given the pilot sample size m ≥ 2, 0 < ρ ≤ 1 and k ≥ 1, an integer, consider the following stopping rule:</p>

$$T \equiv T(c) = \inf \left\{ n \ge 0 : m + kn \ge \rho \sqrt{A/c} \left[W_{m+kn} + (m+kn)^{-\lambda} \right] \right\}$$

The final sample size is then given by

$$N \equiv N(c) = \lfloor \rho^{-1}(m+kT) \rfloor + 1,$$

where |u| means the largest integer smaller than u.

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0	000	0000	0	•	0000

Accelerated Sequential MRPE Saving Sampling Operations

► Given the pilot sample size m ≥ 2, 0 < ρ ≤ 1 and k ≥ 1, an integer, consider the following stopping rule:</p>

$$T \equiv T(c) = \inf \left\{ n \ge 0 : m + kn \ge \rho \sqrt{A/c} \left[W_{m+kn} + (m+kn)^{-\lambda} \right] \right\}$$

The final sample size is then given by

$$N \equiv N(c) = \left\lfloor \rho^{-1}(m+kT) \right\rfloor + 1,$$

where |u| means the largest integer smaller than u.

• Operational time reduced by approximately $100(1 - k^{-1}\rho)$ %.

- 4 目 ト 4 日 ト

Selected References

- Gini, C. (1914). L'Ammontare la Composizione della Ricchezza delle Nazioni, Boca, Torino.
- Gini, C. (1921). Measurement of Inequality of Incomes, *Economic Journal* 31: 124-126.
- Hu, J. and Mukhopadhyay, N. (2019) Second-Order Asymptotics in a Class of Purely Sequential Minimum Risk Point Estimation (MRPE) Methodologies, *Japanese Journal of Statistics and Data Science* 2: 81-104.
- Mukhopadhyay, N. (1996). An Alternative Formulation of Accelerated Sequential Procedures with Applications to Parametric and Nonparametric Estimation, *Sequential Analysis* 15: 253-269.

- 4 周 ト 4 戸 ト 4 戸 ト

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0 000 000	000	0000	0	0	0000

- Mukhopadhyay, N., and Hu, J. (2017). Confidence Intervals and Point Estimators for a Normal Mean Under Purely Sequential Strategies Involving Gini's Mean Difference and Mean Absolute Deviation, Sequential Analysis 36: 210-239.
- Mukhopadhyay, N. and Solanky, T. K. S. (1991). Second Order Properties of Accelerated Stopping Times with Applications in Sequential Estimation, Sequential Analysis 10: 99-123.
- Robbins, H. (1959). Sequential Estimation of the Mean of a Normal Population, in *Probability and Statistics*, H. Cramér volume, Ulf Grenander, ed., pp. 235-245, Uppsala: Almquist & Wiksell.
- Starr, N. (1966). On the Asymptotic Efficiency of a Sequential Procedure for Estimating the Mean, Annals of Mathematical Statistics 37: 1173-1185.

白マ イヨマ イヨン

1. Introduction	2. Sequential MRPE	3. Illustrations	4. Simulated Performances	5. Future Work	Reference
00 0 000 000	000	0000	0	0	0000

- Stein, C. (1945). A Two Sample Test for a Linear Hypothesis Whose Power Is Independent of the Variance, Annals of Mathematical Statistics 16: 243-258.
- Stein, C. (1949). Some Problems in Sequential Estimation (Abstract), *Econometrica* 17: 77-78.

1. Introduction 2. Sequential MRPE 3. Illustrations 4. Simulated Performances 5. Future Work	Reference	
	000•	

▲ロト ▲母 ▶ ▲臣 ▶ ▲臣 ▶ □ 臣 = のへで

QPRC 2019