

Big Data Analytics: structured, semi-structured, and unstructured

DR. CHOUDUR LAKSHMINARAYAN Department of Statistics and Data Sciences, TERADATA LABS, Advanced Algorithms R&D,

Span of Big Data Analytics:

Challenges in Data Management and Analytics

- 1. Dealing with highly distributed data sources
- 2. Tracking data provenance, from data generation through data preparation and Validating data
- 3. Coping with sampling biases and heterogeneity
- 4. Working with different data formats and structures
- 5. Developing algorithms that exploit parallel and distributed architectures
- 6. Ensuring data integrity
- 7. Ensuring data security
- 8. Enabling data discovery and integration
- 9. Enabling data sharing
- 10. Developing methods for visualizing massive data
- **11.** Developing scalable and incremental algorithms
- 12. Coping with the need for real-time analysis and decision-making

Typical Data

Elements of Data Science

Data Science Life Cycle

The Future of Big Data Computing

What is Massive Data Analytics?

Mainstay of Analytics **Goals of Analytics Decision support Decision making** (Prediction) (Exploration) **Output variable:** Segmentation **Real value** YES NO YES NO Regression Classification Clustering Descriptive Summary YES NO Data visualization/ **Association rules Mining/Correlations Summary statistics**

Machine Learning at a Glance

Statistical Clustering

- A cluster is a collection of data entities that are similar to one another within the same cluster and dissimilar to data in other clusters
- Clustering does not rely on pre-defined classes
- Clustering can be thought of as an ad hoc procedure (unsupervised learning)
- Cluster formation is based on a distance measure (or other metric) where observations are grouped into homogeneous groups

Desirable Properties

- 1. Scalability: Ability to deal with large data sets
- 2. Attributes: Ability to deal with binary, categorical, ordinal, numeric data
- 3. Domain Knowledge: Minimal requirement of area of application
- 4. Noisy Data: Ability to deal with outliers, and missing values
- 5. Order of Records: Insensitivity to order of records in the data set
- 6. Dimensions: Ability to deal with high dimensional data
- 7. Homogeneity: data within clusters are similar
- 8. Heterogeneity: Data between clusters are distinctly different
- **9. Stability:** Cluster(s) formation is insensitive to changes in the data sets
- **10.** Actionable : The clusters should be meaningful and meets approval of marketers

Contextualized Data

Clustering Algorithm

Clusters/Groupings

Thus, we see clustering means groupings of data or dividing a large data set into smaller data sets of some similarity.

K-Means Algorithm

- The centroids are calculated from the points that are assigned to each cluster
- We use the *k*-means subroutine with (Hartigan-Wong) option
- At each iteration all cluster assignments are re-evaluated. Cluster boundaries are perpendicular bisectors of lines joining centroids
- We compared performance with the FASTCLUS procedure in SAS[®] for evaluation which is *k*-means (Hartigan-Wong) option

Steps involved in K-Means algorithm

- 1. Randomly select *k* data points to be the seeds from the data set
 - 1. They can be the first *k* records
 - 2. If the data has some order, choose widely spread records
- 2. Assign each subsequent record to the closest seed until all records in data set are assigned.
- Then compute centroids as the average value of each attribute/dimension of all the observations in the cluster.
- Using centroids as the seeds repeat step 2 onwards until cluster boundaries stop changing.

The assignment criterion is:

$$C(i) = \underset{i \le k \le K}{\operatorname{argmin}} \|\vec{x}_i - \vec{m}_k\|$$

Stopping Rules for Finding number of Clusters

Create a Raw Data file Consisting of Original Customer Data

Project and Transform the Data into an Attribute Space(Contextual Space)

Apply K-means iteratively to determine appropriate number of clusters for Upstream Segmentation • We use the SNR (Signal to Noise) Metric with a Stopping Rule Criterion to determine the number of clusters • And exclude the Noise Clusters

Merge the Results from K-Means with the Original Data by Visitor ID •Interpret the Clusters By Customer Attributes to Generate Meaningful/Actionable Customer Segments At each Iteration, *K*-Means
(*k*=1,2,3,...) produces within cluster
(Homogeneity) and Between cluster
(Heterogeneity) Sum of Squares.
The Within(SSW)+Between (SSB) is

- the Total Sum of Squares(SST)
- We calculate ϕ =1-SSW/SST
- We call φ the SNR
- •We measure the Change in Δφi = φiφi-1from Iteration "*i*-1" to Iteration "*i*."

 When Δφi < Median(Δφi), The Corresponding Cluster Solution is Accepted

- The Akaike information criterion (AIC) is commonly used for model selection
- Its performance is not satisfactory in practical applications: generates too many clusters
- (AIC) is a measure of relative quality of a *k*-means solution.
- That is, given a collection of clustering solutions, (k=1,2,3,...), AIC evaluates the quality of each k-means result, relative to the results for other values of k.
- So, AIC purportedly provides a means for selecting optimal *k*.
- In our application of AIC produced too many clusters that were not actionable to marketers

Analyzing Throughput of CVICU and NICU

Problem Statement

- The quantitative analysis of identifying sources of variation and bottlenecks in clinical care in an ICU is known as complex care analytics (CCA)
- Patient level analysis may reveal actionable insights
- An approach to CCA requires studying patient data as a series of events/interventions across ailment categories in an ICU

To identify resource utilizations by cohorts of patients
 Identify top *"k"* ailments by admission rates and analyze variations in medical practice by cost and outcomes

1st Case Study: Segmenting Patients in Intensive Care Units

Data and Methodology

- Patient level data from CVICU, NICU, PICU, Other Units
- Focus of Analysis: CVICU
- Analytical tools
 - 1. Exploratory Data Analysis
 - 2. Statistical Clustering
 - 3. Time series analysis
- Interpretation of Results by Domain experts

Cluster Analysis revealed patient groups in relation to "resource consumption" and types "types of interventions"

Cluster 1 Interpretation

Patients requiring Surgical
 Operations in CVICU
 Resource Intensive group

•Average Resource Utilization: Hospital resources consumed based on counts

Length of Stay	Radiology	UltraSound	MRI&CT	Blood Bank	Respiratory	Ventilator	Diagnostic Echo	Microbiology	Distinct Pharma	Medications	Distinct Laboratory
12.32	17.86	0.57	0.19	27.43	64.70	0.43	4.03	11.35	39.35	309.73	19.35

Cluster 2 Interpretation

Patients in CVICU requiring
 Supportive and Diagnostic
 Care

High Resource Consumption
 Group

Average Resource Utilization: Hospital resources consumed based on counts

Length of Stay	Radiology	UltraSound	MRI&CT	Blood Bank	Respiratory	Ventilator	Diagnostic Echo	Microbiology	Distinct Pharma	Medications	Distinct Laboratory
27.50	39.37	4.00	0.32	73.79	119.84	1.68	8.89	35.21	63.47	757.11	37.00

Cluster 3 Interpretation

Very Sick Children in CVICU

 Birth Defects,
 Pre-mature Births

 High Resource Consumption Group

Average Resource Utilization: Hospital resources consumed based on counts

Length of Stay	Radiology	UltraSound	MRI&CT	Blood Bank	Respiratory	Ventilator	Diagnostic Echo	Microbiology	Distinct Pharma	Medications	Distinct Laboratory
6.85	11.45	0.29	0.03	16.74	35.23	0.58	1.65	4.48	30.77	157.32	14.23