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Statistical Clustering 

 
 

It clearly would not be proper to combine the heights of men belonging to two dissimilar races, in the expectation that 
the compound results would be governed by the same set of constants….-Francis Galton 
___________________________________________________________________ 

Introduction 3.0  

The chapter on classification deals with methods to assign an observation to one of 

a finite number of classes. The classes are defined a priori and serve as a training 

set in the learning effort.  Classification is valuable in being able to identify the class 

membership of a new observation based on a distance measure or some other 

criterion based on probabilistic analysis of the training data.  The methodology is 

appropriate to assign new observations to previously established classes.  It requires 

significant manual effort to create a comprehensive list of classes and populate the 

classes with examples.  On the other hand, statistical clustering is a method that 

attempts to dissemble a heterogeneous set of observations into natural 

homogeneous groups such that within group homogeneity is small. Clustering can 

be viewed as an exploratory data analytic technique.  Large e-commerce sites may 
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want to discern differences in a large set of on-line visitors to understand their 

propensity to buy is one example of clustering.     

The goal of statistical clustering is data dissection.  Statistical clustering does not rely 

on a set of pre defined classes and in a sense can be viewed as an ad hoc 

procedure.   Very little if any of effort is required to initiate clustering.  Cluster 

analysis of data tends to unravel groups that are hitherto unknown.  If clustering is 

performed over sets of data assembled periodically, the data sets break away into 

natural groupings and certain groups may highlight newly emerging data segments.  

For example, if one is studying the voting trends in a district, clustering may reveal a 

groupings of voters concerned about specific issues due to changes in social, 

economic, or security environments.   

A distinguishing feature of clustering is that it is not for the large part based on 

probabilistic models.  More formally, the process of grouping a set of physical or 

abstract entities into homogenous or similar classes is called clustering.  A cluster is 

a collection of data entities that are similar to one another within the same cluster 
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and quite dissimilar to objects or entities in other clusters. There are mainly three 

approaches to statistical clustering known as hierarchical clustering, clustering based 

on partition methods and finally model based clustering.   Our focus is on these 

methods in this chapter. 

Section 3.1 Hierarchical clustering 

Hierarchical clustering methods involve a series of iterations combining or dividing a 

group of observations.  Methods involving successive mergers of observations are 

known as agglomerative procedures, and those that involve a series of divisions are 

known as divisive.  Agglomerative clustering start by treating each individual 

observation in the data set as a cluster.  Then the most similar observations are 

combined into groups and in the subsequent steps, the groups are further fused 

based on their similarity.  Divisive clustering takes the opposite approach.  At the 

outset it treats the entire data set as one giant cluster.  Subsequently the data set is 

broken into two subsets such that observations in one subset are far from the 

observations in the other.  The subsets are further divided into component dissimilar 
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clusters and the process continues until there are as many sub-groups as the 

number of observations.  The results of agglomerative and divisive clustering are 

displayed visually by a tool known as a dendrogram.  A dendrogram is a 'tree-like' 

diagram that summaries the process of clustering. Similar cases are joined by links 

whose position in the diagram is determined by the degree of similarity between the 

observations. 

Section 3.2 Agglomerative clustering  

In agglomerative clustering, each record is treated as a cluster. If there are n 

records, there are n clusters to begin with, each containing one record.  The next is a 

partition into 1�n clusters, and the next into 2�n , and so on…..until all samples 

form one cluster.  Clearly at the kth  level, the number of clusters is equal to 1�� kn .  

Algorithmically, agglomerative clustering may be laid out in the following steps. 

x Start with an initial set of N clusters, each cluster consisting of a single object.  The 

pair-wise distances between objects in the singleton clusters are arranged in a 
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matrix form.  The matrix denoted by C is a symmetric matrix of order N x N.   
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Each NjNidij ,.....,2,1,,....2,1,   is the Euclidean distance between objects xi  

and x j .   

x Scan the matrix C for the nearest pair of objects.  Find the closest pairs of objects 

and merge them into one cluster.   

x Then delete the rows and columns corresponding clusters that were merged and 

adding a row and column giving the pair-wise distances between the newly formed 

cluster and the remaining clusters.   

x Steps two and three are repeated 1�N  times till objects combine to form one 

cluster.   

As a part of book keeping a log of merged clusters and their corresponding levels is 

maintained.   
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Procedurally, Agglomerative clustering procedure is described in the following steps: 

Procedure: Basic agglomerative Clustering 

Loop: 

1. Let nC
^
 and .n,....3,2,1i},x{}X{ ii    

2. If ,cC
^
d stop 

3. Find the nearest pair of distinct clusters, say X i and X j . 

4. Merge X i and X j , and delete X j , and decrement C
^

 by one. 

5. Go to Loop 

Note that in step 3. We need to find the two nearest X i and X j .  

Consider the matrix of distances 
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The matrix C is capturing the pair wise distances between objects.  The objects 

might be a litter of mice and the entries (observations) the difference in weight in 

grams between any pair of mice in the litter.  Scanning the matrix of distances note 

that objects 6 and 4 are the closest.  Combining objects 6 and 4, the distances 

between (64) and 1,2,3,5 are: 
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Using the distances, the new matrix of distances is 

(64) 1 2 3 5
(64) 0

1 5 0
2 4 6 0
3 6 2 6 0
5 5 8 9 4 0

 

Figure 3.1.  The new configuration of distances after the first step in the clustering process 

From the matrix it is clear that objects 3 and 1 are the next set of objects to be 

combined.  At this stage in the agglomerative process, the sub groups are, (64), (31), 
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2, and 5.  The distances between (64) and (31) is  
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The new matrix of distances is 

(64) (31) 2 5
(64) 0
(31) 5 0

2 4 6 0
5 5 4 9 0

 

Figure 3.2.   Further clustering of objects in the sub-sequent step of clustering 

From the matrix it is quite clear that (64) combines with 2 and 5 combines with (31).  

Finally, (642) and (315) combine in the last stage.  The dendrogram upon clustering 

is given in Figure 3.3. 
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Figure 3.3.  Dendrogram of the matrix C of distances given above. 

Section 3.3 Deficiencies of hierarchical methods 

As with many other clustering schemes, clusters formed by agglomerative methods 

may be erroneous as linkages built early in the clustering process may be incorrect.   

The procedures tend to be sensitive to outliers.   The consistency of statistical 

clustering may be established by adding some small errors to the observations and 
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comparing the result to the outcome from the original set of unperturbed 

observations.   

Agglomerative hierarchical clustering is discussed in Anderberg (1973), Sneath and 

Sokal (1973), Hartigan (1975), Everitt (1980), and Spath (1980). A very good 

introductory treatment is in Massart and Kaufman (1983). A serious practitioner of 

hierarchical cluster analysis should study the Monte Carlo results of Milligan (1980), 

Milligan and Cooper (1985), and Cooper and Milligan (1988). Other notable 

references on hierarchical clustering include Hartigan (1977, pp. 60 - 68; 1981), 

Wong (1982), Wong and Schaack (1982), and Wong and Lane (1983).  

Section 3.4 Clustering by Partition Methods  

The k  -means algorithm is a very popular clustering method.  It requires partitioning 

the data set into k  preliminary partitions.  It iteratively assigns observations into one 

of k  clusters using a distance metric under a minimization criterion.  It combines an 

effective method for finding initial clusters with a standard iterative algorithm for 
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minimizing the sum of squared distances from the cluster means. The result is an 

efficient procedure for disjoint clustering of large data sets. A set of observations 

called cluster centroids is selected by computing the arithmetic mean of each 

partition. Each observation is assigned to the nearest centroid to form temporary 

clusters. The centroids are then updated by re-computing the centroids of the 

temporary clusters, and the process is repeated until no further changes occur in the 

clusters.  

Similar techniques are described in most references on clustering (Anderberg 1973; 

Hartigan 1975; Everitt 1980; Spath 1980). The clustering is done on the basis of 

Euclidean distances computed from one or more numeric variables. Observations 

that are very close to each other are usually assigned to the same cluster, while 

observations that are far apart are in different clusters.  

k-means clustering procedure is described in the following steps: 

Procedure: Basic k-means clustering 

Loop: 

1. Proceed through the list of items, assigning an item to the cluster whose 

cluster center (centroid) is nearest.  The measure of “nearness” is the 

Euclidian distance, computed with either standardized† or un-standardized 

                                                 
† standardized data is also referred to by some authors as normalized data.  One method of standardization 
involves squeezing the range of a variable between 0 and 1.  This is usually achieved by dividing each 
observation by the largest value in the data set.    
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observations.   Recalculate the cluster center for the cluster receiving the new 

item and for the cluster losing the item. 

2. Go to loop, until no more assignments take place. 

Alternately, rather than starting with a partition of all items into k  preliminary groups 

in step 1, we could specify k  initial cluster centers and then proceed to step 2.   

Iterative assignment of items to clusters is processed such that the within cluster 

variance is minimized and between cluster variance is maximized.  In other words 

we are minimizing the squares of differences between each observation and a 

cluster center across clusters.   

Example 3.1. Applying the K-means algorithm to fisher iris data.   

data iris;  
      title 'Fisher (1936) Iris Data';  
      input SepalLength SepalWidth PetalLength PetalWidth Species @@;  
      format Species specname.;  
      label SepalLength='Sepal Length in mm.'  
            SepalWidth ='Sepal Width in mm.'  
            PetalLength='Petal Length in mm.'  
            PetalWidth ='Petal Width in mm.';  
      symbol = put(species, specname10.);  
      datalines;  
   50 33 14 02 1  
   64 28 56 22 3  
   65 28 46 15 2  
   67 31 56 24 3  
   .  .  .  .  .   
   .  .  .  .  .  
   52 35 15 02 1  
   53 37 15 02 1  
   ;  
  
   proc fastclus data=iris maxc=2 maxiter=10 out=clus;  
      var SepalLength SepalWidth PetalLength PetalWidth;  
   run;  
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Section 3.5 Some practical issues, deficiencies and helpful hints associated with partition 
methods 

Before performing cluster analysis on numerical data, it is necessary to consider 

scaling or transforming the variables since variables with large variances tend to 

have more effect on the resulting clusters than those with small variances. The data 

may be standardized such that variables have mean zero and variance equal to 

equal to 1. However standardization is not always desirable. Milligan and Cooper 

(1987) report a Monte Carlo study on various methods of variable standardization. 

Outliers or any suspicious observations should be removed before clustering. 

Nonlinear transformations of the variables may change the number of population 

clusters and therefore should be applied judiciously. For most applications, the 

variables should be transformed so that equal differences are of equal practical 

importance. Non linear transformations are suitable for numeric data only. 

If two or more initial points assigned as initial centroids lie in the same cluster, their 

resulting clusters may be poorly differentiated.   
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The selection of k clusters at the outset forces the observations to be 

accommodated into the k  clusters possibly leading to spurious results. 

The presence of outliers in the data may produce clusters with highly variable data 

points.   

Section 3.6 Gaussian Mixture Models 

Heretofore, the clustering problem consisted of splitting a given data set into 

component clusters based on a distance measure subject to some optimization 

criterion such as minimizing sum of squares.  Absent in this framework is a 

comprehension of an underlying stochastic process governing the observed data.  

To bring to bear the influence of the stochastic process, we model the clustering 

problem as a mixture of Gaussian densities.  This approach to clustering is often 

referred to as model based clustering. It is model based in that there is an underlying 

component probability density function associated with each cluster.  The idea of 

density based clustering is sound in that it recognizes and quantifies the random 

process producing the data.  The probability distribution of the data is modeled as a 
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linear combination of k  densities and the method of maximum likelihood is used to 

estimate the component density parameters.  The simplicity of making final 

assignment of cases to classes that it is most likely to have generated the 

observation makes the approach intuitive and appealing.   Mathematically the 

probability density of the observed datum is expressed as a linear combination given 

by: 
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Similarly a maximum likelihood estimate of the variance of a component density is 

given by; 
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The solution appears to be appealing as an estimate of the mean P j is a weighted 

average of the observations.  The weight of sample xi is simply an estimate of the 

likelihood of its membership in class c j .  We notice however that the posterior 

densities themselves are functions ofP j .  Thus the posterior function itself may be 

estimated by 
¦ ¸

¹
·¨

©
§

¸
¹
·¨

©
§

 ¸
¹
·¨

©
§

 

c

j jj
ji

j
ij

cxf

cxf
xcf

jjji

1

^

^

^^

^^^

^

,|

,|
,|

SP

SP
P                                                   (3.9)   

Section 3.7 Final remarks 

Clustering is a challenging field of research in data mining.  As we saw there is a 

vast amount of literature on clustering dating back to several decades.  The field is 

rife with new techniques.  The success or failure of these methods is hard to judge.  

In our experience if a clustering implementation results in a valuable insight the effort 

may be deemed successful.  Some of the issues in relation to clustering are: 

x Scalability 



 18 

Notes: 

 Most algorithms work well on small data sets.  Clustering high volume databases 

with millions of records requires scalable methods 

x Clusters with arbitrary shape 

Most algorithms use the Euclidian metric which are good for clusters with spherical 

shapes and similar size. 

It is important to develop clusters for arbitrary shapes. 

x High dimensionality  

A database contains several attributes or dimensions.  Many algorithms are good at 

handling low-dimensional data.  Higher dimensional data with data sparsity is a 

definite problem in clustering. 

x Noisy data  

Data is often noisy.  Real-world databases contain outliers, missing data, erroneous 

data.  Methods ought to deal with these conditions in the data.  For further advanced 

research and study, the reader is referred to the list of references. 


