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Part 1: Sequential Stochastic Assignment

Problem with Fixed Number of Jobs



Classical Formulation a

� Suppose that n jobs arrive sequentially in time.

� The tth job, 1 ¤ t ¤ n, is identified with a random variable Yt

which is observed.

� The jobs must be assigned to n persons which have

known “values” p1, � � � , pn.

� If the tth job is assigned to the jth person then a reward of

pjYt is obtained and the person j becomes unavailable.

� The goal: to maximize expected total reward

Snpπq :� E
ņ

t�1

pπt
Yt.

aDerman, Lieberman & Ross (1972). A sequential stochastic assignment problem. Management Science,
18, 349–355.



Notations

� Assume that Y1, . . . , Yn are integrable independent random

variables defined on probability space pΩ,F ,Pq.

� let Ft a be the distribution function of Yt, t � 1, . . . , n.

� Let Yt denote the σ–field generated by pY1, . . . , Ytq:

Yt � σpY1, . . . , Ytq, 1 ¤ t ¤ n.

� π � pπ1, . . . , πnq is a permutation of t1, . . . , nu defined on

pΩ,F q.

� We say that π is an assignment policy if tπt � ju P Yt for

every 1 ¤ j ¤ n and 1 ¤ t ¤ n:

π is a policy if it is non–anticipating relative to the filtration

Y � tYt, 1 ¤ t ¤ nu so that tth job is assigned on the basis of

information in Yt.
aAlbright, S. C., Jr. (1972). Stochastic sequential assignment problems. Technical report, 147, Stanford

University.



Formal Statement: Problem (AP1)

� Given a vector p � pp1, . . . , pnq, with p1 ¤ p2 ¤ � � � ¤ pn,

� we want to maximize the total expected reward

Snpπq :� E
°n
t�1 pπtYt with respect to π P ΠpY q.

� The policy π� is called optimal if Snpπ�q � supπPΠpY q Snpπq.

Useful representation:

ņ

t�1

pπt
Yt �

ņ

t�1

ņ

j�1

pjYt1tπt � ju �
ņ

j�1

pjYνj ;

• νj denotes the index of the job to which the jth person is

assigned: tνj � tu � tπt � ju, 1 ¤ t ¤ n, 1 ¤ j ¤ n.



Backward Induction Solution

� Theorem (DLR, 1972; Albright, 1972):

– There exist real numbers

�8 � a0,n ¤ a1,n ¤ � � � ¤ an�1,n ¤ an,n � 8 such that on the

first step, when Y1 � F1 is observed, the optimal policy is

π�1 �
ņ

j�1

j1tY1 P paj�1,n, aj,nsu.

– taj,nu
n
j�1 do not depend on p1, . . . , pn and are determined

by

aj,n�1 �

» aj,n
aj�1,n

zdF1pzq � aj�1,nF1paj�1,nq � aj,nr1� F1paj,nqs,

j � 1, . . . , n, where �8 � 0 � 0 � 8 � 0.



Backward Induction Solution (con’t)

• At the end of the first stage the assigned p is removed from

the feasible set and the process repeats with the next

observation, where the above calculation is then performed

relative to the distribution F2 and real numbers

�8 � a0,n�1 ¤ a1,n�1 ¤ � � � ¤ an�2,n�1 ¤ an�1,n�1 � 8 are

determined, and so on.

• Moreover,

aj,n�1 � EYνj , @1 ¤ j ¤ n,

i.e., aj,n�1 is the expected value of the job which is assigned

to the jth person.



Remark and Example

� By backward induction we determine a triangular array,

where we use Fn�t�2 to determine ta., tu:

a1,2

a1,3, a2,3

a1,4, a2,4, a3,4

...

a1,n, a2,n, . . . , an�1,n

a1,n�1, a2,n�1, . . . , an,n�1 ñ Snpπ
�q � p1 � a1,n�1 � � � � � pn � an,n�1

� Example: X1 � X2 � X3 � Uniformr0, 1s

a1,2 � 1{2

a1,3 � 3{8, a2,3 � 5{8

a1,4 � 39{128, a2,4 � 39{128, a3,4 � 89{128 ñ

S3 � p1 � 39{128� p2 � 1{2� p3 � 89{128.



Part 2: Sequential Stochastic Assignment

Problem with Random Number of Jobs



Problem (AP2)

� Let N be a positive integer-valued random variable with

known distribution γ � tγku, γk � PpN � kq, k � 1, . . . , Nmax,

where Nmax can be infinite.

� Let Y1, Y2, . . . be an infinite sequence of integrable

independent random variables with distributions F1, F2, . . .,

independent of N .

� Given real numbers p1 ¤ . . . ¤ pNmax
the objective is to

maximize the expected total reward

Sγpπq � E
Ņ

t�1

pπtYt

over all policies π P ΠpY q.



Random Number of Jobs

� Theorem: a

� In Problem (AP2) assume that Nmax   8 and let

Ỹt :� Yt

Nmax¸
k�t

γk, t � 1, . . . , Nmax

.

� For any π P ΠpY q one has

Sγpπq � E
Nmax¸
t�1

pπt Ỹt,

and the optimal policy in Problem (AP2) coincides with the

optimal policy in Problem (AP1) associated with fixed

horizon n � Nmax and job sizes Ỹ1, . . . , ỸNmax
.

aGoldenshluger, A., Malinovsky, Y., Zeevi, A. (2019). A Unified Approach for Solving Sequential Selection
Problems. arXiv:1901.04183.



Proof

� For any π P ΠpY q we have

Sγpπq � E
°N
t�1 pπt

Yt �
°Nmax

t�1 Erpπt
Yt1pN ¥ tqs,

� and

ErpπtYt1pN ¥ tqs � E
Nmax¸
k�t

E
!
rpπtYt1pN � kqs |Yt

)
� E

!
pπtYt

Nmax¸
k�t

γk

)

� E
!
pπt

Ỹt

)
,

where we have used the fact that πt is Yt–measurable, and N

is independent of Yt.

� Therefore E
°N
t�1 pπt

Yt � E
°Nmax

t�1 pπt
Ỹt.

� Note that Ỹt are independent random variables, and σ-fields

Ỹt and Yt are identical. This implies the stated result.



Part 3: Selecting one of the k Best

Values with Random Number of

Alternatives



Sequential Selection Problems

� Let X1, X2, . . . be an infinite sequence of independent

identically distributed continuous random variables defined on

a probability space pΩ,F ,Pq.

�

Rt :�
ţ

j�1

1pXt ¤ Xjq, At,n :�
ņ

j�1

1pXt ¤ Xjq, t � 1, . . . , n.

� Let Rt :� σpR1, . . . , Rtq and Xt :� σpX1, . . . , Xtq denote the

σ–fields generated by R1, . . . , Rt and X1, . . . , Xt

� R � pRt, 1 ¤ t ¤ nq and X � pXt, 1 ¤ t ¤ nq are the

corresponding filtrations.

� The class of all stopping times of a filtration

Y � pYt, 1 ¤ t ¤ nq will be denoted T pY q; i.e., τ P T pY q if

tτ � tu P Yt for all 1 ¤ t ¤ n.



Average Reward

� Fixed n: Problem (A1): Let n be a fixed positive integer, and

let q : t1, 2, . . . , nu Ñ R be a reward function. The average

reward of a stopping rule τ P T pRq is Vnpq; τq :� Eq
�
Aτ,n

�
, and

we want to find the rule τ� P T pRq such that

V �
n pqq :� max

τPT pRq
Vnpq; τq � Eq

�
Aτ�,n

�
.

� Random N: Problem (A2): γk � PpN � kq, k � 1, 2, . . . , Nmax,

N K tXt, t ¥ 1u. Let q : t1, 2, . . . , Nmaxu Ñ R.

Vγpq; τq :� E
�
qpAτ,N q1pτ ¤ Nq

�
.

We want to find the stopping rule τ� P T pRq such that

V �
γ pqq :� max

τPT pRq
Vγpq; τq � Vγpq; τ�q.



Fixed n: Gusein-Zade Stopping Problem a

� Selecting One of the k Best Values: qpaq � q
pkq
gz paq :� 1ta ¤ ku,

and the problem is to maximize PtAτ,n ¤ ku with respect to

τ P T pRq.

� The optimal policy: is determined by k natural numbers

1 ¤ π1 ¤ π2 ¤ � � � ¤ πk

and proceeds as follows: pass the first π1 � 1 observations

and among the subsequent π1, π1 � 1, . . . , π2 � 1 choose the

first best observation; if it does not exists then among the

set of observations π2, π2 � 1, . . . , π3 � 1 choose one of the two

best, etc.

� Example (n=30, k=3): π1 � 11, π2 � 18, π3 � 24 and
aGusein-Zade, S. M. (1966). The problem of choice and the optimal stopping rule for a sequence of inde-

pendent trials. Theory Probab. Appl., 11, 472–476.



maxτPT pRq PtAτ,30 ¤ 3u � 0.73492.



An Auxiliary Optimal Stopping Problem: Problem (B)

� Let Y1, . . . , Yn be a sequence of integrable independent

real-valued random variables with corresponding distributions

F1, . . . , Fn.

� For a stopping rule τ P T pY q define Wnpτq :� EYτ . The

objective is to find the stopping rule τ� P T pY q such that

W�
n :� max

τPT pY q
EYτ �Wnpτ�q � EYτ� .



DLR (1972) Solution of Problem (B)

� Consider Problem (AP1) with p1 � 0, p2 � 0, . . . , pn � 1 and by

Theorem (DLR, 1972), at step t the optimal policy assign pn

to the job Yt only if Yt ¡ an�t,n�pt�1q and � � �

� Let tbt, t ¥ 1u be the sequence of real numbers defined

recursively by

� b1 � �8, b2 � EYn,

� bt�1 �
³8
bt
zdFn�t�1pzq � btFn�t�1pbtq, t � 2, . . . , n.

� Let

τ� � mint1 ¤ t ¤ n : Yt ¡ bn�t�1u;

then

W�
n � EYτ� � max

τPT pY q
EYτ � bn�1.



Reduction: Problems (A1) ñ Problem (B)

� Fixed Horizon n

Let

It,nprq :�
n�t�r¸
a�r

qpaq

�
a�1
r�1

��
n�a
t�r

�
�
n
t

� � EtqpAt,nq |Rt � ru, r � 1, . . . , t. (1)

Yt :� It,npRtq, t � 1, . . . , n. (2)

� Theorem: the optimal stopping rule τ� solving Problem (B)

with random variables tYtu given in (1)–(2) also solves

Problem (A1):

Vnpq; τ�q � max
τPT pRq

EqpAτ,nq � max
τPT pY q

EYτ .



Proof

� First we note that for any stopping rule τ P T pRq one has

EqpAτ,nq � EYτ , where Yt :� ErqpAt,nq|Rts.

�

EqpAτ,nq �
ņ

k�1

EqpAτ,nq1tτ � ku �
ņ

k�1

EqpAk,nq1tτ � ku

�
ņ

k�1

E
�
1tτ � kuEtqpAk,nq|Rku

�
�

ņ

k�1

Er1tτ � kuYks � EYτ ,

where we have used the fact that tτ � ku P Rk. This implies

that maxτPT pRq EqpAτ,nq � maxτPT pRq EYτ .

� To prove the theorem it suffices to show only that

max
τPT pRq

EYτ � max
τPT pY q

EYτ . (3)



Proof (Con’t)

� Clearly,

Yt � Rt, @1 ¤ t ¤ n. (4)

� Because R1, . . . , Rn are independent random variables, and

Yt � It,npRtq, @t we have that for any s, t P t1, . . . , nu with s   t

PtGt |Ysu � PtGt |Rsu, @Gt P Yt. (5)

� The statement (3) follows from (4), (5) and Theorem 5.3. a

This concludes the proof.

aChow, Y. S., Robbins, H. and Siegmung, D. (1971). Great Expectations: The Theory of Optimal Stopping.
Houghton Mifflin Company, Boston.



Numerical Values

n k P pn, kq Epn, kq{n n k P pn, kq Epn, kq{n

100 2 0.57956 0.68645 1,000 2 0.57417 0.68966

5 0.86917 0.60871 5 0.86123 0.60988

10 0.98140 0.54236 10 0.97703 0.54434

15 0.99755 0.50428 15 0.99609 0.50893

10,000 2 0.57363 0.68927 50,000 2 0.57358 0.68923

5 0.86043 0.61014 5 0.86036 0.61018

10 0.97658 0.54496 10 0.97654 0.54500

15 0.99592 0.50947 15 0.99591 0.50950

Table 1: Optimal probabilities P pn, kq and the normalized expected

time elapsed until stopping Epn, kq{n for selecting one of the k best

values.



Optimal Strategy for n � 30, k � 3
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n pqq � 0.73492



Reduction: Problems (A2) ñ Problem (B)

� Random Horizon

Let

Jtprq :�
Nmax¸
k�t

γkIt,kprq, r � 1, . . . , t. (6)

Define

Yt :� JtpRtq �
Nmax¸
k�t

γkIt,kpRtq, t � 1, . . . , Nmax. (7)

� Theorem: let Nmax   8; then the optimal stopping rule τ�

solving Problem (B) with fixed horizon Nmax and random

variables tYtu given in (6)–(7) provides the optimal solution

to Problem (A2):

V �
γ pqq � max

τPT pRq
Vγpq; τq � max

τPT pY q
EYτ �WNmaxpτ

�q.



Proof

� In Problem (A2) the reward for stopping at time t is

q̃pAt,N q � qpAt,N q1tN ¥ tu.

EtqpAt,N q1tN ¥ tu |R1 � r1, . . . , Rt�1 � rt�1, Rt � ru

�
Nmax¸
k�t

E
 
qpAt,N q1tN � ku |R1 � r1, . . . , Rt�1 � rt�1, Rt � r

(

�
Nmax¸
k�t

E
 
1tN � kuE

�
qpAt,kq |N � k,Rt � r

�(

�
Nmax¸
k�t

γk

k�t�r¸
a�r

qpaq

�
a�1
r�1

��
k�a
t�r

�
�
k
t

� �
Nmax¸
k�t

γkIt,kprq �: Jtprq. (8)

� Together with (7) this implies that Eq̃pAτ,N q � EJτ pRτ q � EYτ

for any τ P T pRq. The remainder of the proof proceeds along

the lines of the proof of Theorem for fixed horizon n.



Optimal Strategy for N � Uniform t1, 2, . . . , 30u , k � 3
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Concluding Remarks

� The proposed framework is applicable to sequential selection

problems that can be reduced to settings with independent

observations and additive reward function. In particular:

– selection problems with no-information, rank-dependent

rewards and fixed or random horizon,

– selection problems with full information when the random

variables tXtu are observable, and the reward for stopping

at time t is a function of the current observation Xt only,

– multiple choice problems with random horizon and

additive reward.



Concluding Remarks (con’t)

� The proposed framework is not applicable to the following

sequential selection problems:

– for instance, settings with rank-dependent reward and full

information as in Gnedin (2007) a cannot be reduced to

optimal stopping of a sequence of independent random

variables

– multiple choice problem with zero-one reward, where the

problem of maximizing the probability of selecting k best

alternatives; see, e.g., Rose (1982) b where the problem

of maximizing the probability of selecting k best

alternatives was considered.

aGnedin, A. V. (2007). Optimal stopping with rank-dependent loss. J. Appl. Probab., 44, 996–1011.
bRose, J. S. (1972). A problem of optimal choice and assignment. Oper. Res., 30, 172–181.



Thank You !


