A Sequential Stochastic Assignment Problem with Random Number of Jobs

Yaakov Malinovsky
University of Maryland, Baltimore County, USA

joint work with
Alexander Goldenshluger, University of Haifa, Israel
Assaf Zeevi, Columbia University, USA

36th Annual Quality and Productivity Research Conference June 10-13, 2019
American University
Washington, DC

Outline

- Sequential Stochastic Assignment Problem with Fixed Number of Jobs
- Sequential Stochastic Assignment Problem with Random Number of Jobs
- Selecting one of the k Best Values with Random Number of Alternatives

Part 1: Sequential Stochastic Assignment Problem with Fixed Number of Jobs

Classical Formulation ${ }^{a}$

- Suppose that n jobs arrive sequentially in time.
- The t th job, $1 \leqslant t \leqslant n$, is identified with a random variable Y_{t} which is observed.
- The jobs must be assigned to n persons which have known "values" p_{1}, \cdots, p_{n}.
- If the t th job is assigned to the j th person then a reward of $p_{j} Y_{t}$ is obtained and the person j becomes unavailable.
- The goal: to maximize expected total reward

$$
S_{n}(\pi):=E \sum_{t=1}^{n} p_{\pi_{t}} Y_{t}
$$

[^0]
Notations

- Assume that Y_{1}, \ldots, Y_{n} are integrable independent random variables defined on probability space ($\Omega, \mathscr{F}, \mathrm{P}$).
- let F_{t} a be the distribution function of $Y_{t}, t=1, \ldots, n$.
- Let \mathscr{Y}_{t} denote the σ-field generated by $\left(Y_{1}, \ldots, Y_{t}\right)$: $\mathscr{Y}_{t}=\sigma\left(Y_{1}, \ldots, Y_{t}\right), 1 \leqslant t \leqslant n$.
- $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ is a permutation of $\{1, \ldots, n\}$ defined on (Ω, \mathscr{F}).
- We say that π is an assignment policy if $\left\{\pi_{t}=j\right\} \in \mathscr{Y}_{t}$ for every $1 \leqslant j \leqslant n$ and $1 \leqslant t \leqslant n$: π is a policy if it is non-anticipating relative to the filtration $\mathscr{Y}=\left\{\mathscr{Y}_{t}, 1 \leqslant t \leqslant n\right\}$ so that t th job is assigned on the basis of information in \mathscr{Y}_{t}.

[^1]
Formal Statement: Problem (AP1)

- Given a vector $p=\left(p_{1}, \ldots, p_{n}\right)$, with $p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{n}$,
- we want to maximize the total expected reward $S_{n}(\pi):=\mathrm{E} \sum_{t=1}^{n} p_{\pi_{t}} Y_{t}$ with respect to $\pi \in \Pi(\mathscr{Y})$.
- The policy π^{*} is called optimal if $S_{n}\left(\pi^{*}\right)=\sup _{\pi \in \Pi(\mathscr{O})} S_{n}(\pi)$.

Useful representation:

$$
\sum_{t=1}^{n} p_{\pi_{t}} Y_{t}=\sum_{t=1}^{n} \sum_{j=1}^{n} p_{j} Y_{t} \mathbf{1}\left\{\pi_{t}=j\right\}=\sum_{j=1}^{n} p_{j} Y_{\nu_{j}}
$$

- ν_{j} denotes the index of the job to which the j th person is assigned: $\left\{\nu_{j}=t\right\}=\left\{\pi_{t}=j\right\}, 1 \leqslant t \leqslant n, 1 \leqslant j \leqslant n$.

Backward Induction Solution

- Theorem (DLR, 1972; Albright, 1972):
- There exist real numbers
$-\infty \equiv a_{0, n} \leqslant a_{1, n} \leqslant \cdots \leqslant a_{n-1, n} \leqslant a_{n, n} \equiv \infty$ such that on the first step, when $Y_{1} \sim F_{1}$ is observed, the optimal policy is

$$
\pi_{1}^{*}=\sum_{j=1}^{n} j \mathbf{1}\left\{Y_{1} \in\left(a_{j-1, n}, a_{j, n}\right]\right\}
$$

- $\left\{a_{j, n}\right\}_{j=1}^{n}$ do not depend on p_{1}, \ldots, p_{n} and are determined by

$$
\begin{aligned}
& a_{j, n+1}=\int_{a_{j-1, n}}^{a_{j, n}} z \mathrm{~d} F_{1}(z)+a_{j-1, n} F_{1}\left(a_{j-1, n}\right)+a_{j, n}\left[1-F_{1}\left(a_{j, n}\right)\right] \\
& j=1, \ldots, n, \text { where }-\infty \cdot 0 \equiv 0 \equiv \infty \cdot 0
\end{aligned}
$$

Backward Induction Solution (con't)

- At the end of the first stage the assigned p is removed from the feasible set and the process repeats with the next observation, where the above calculation is then performed relative to the distribution F_{2} and real numbers
$-\infty \equiv a_{0, n-1} \leqslant a_{1, n-1} \leqslant \cdots \leqslant a_{n-2, n-1} \leqslant a_{n-1, n-1} \equiv \infty$ are determined, and so on.
- Moreover,

$$
a_{j, n+1}=\mathrm{E} Y_{\nu_{j}}, \quad \forall 1 \leqslant j \leqslant n
$$

i.e., $a_{j, n+1}$ is the expected value of the job which is assigned to the j th person.

Remark and Example

- By backward induction we determine a triangular array, where we use F_{n-t+2} to determine $\left\{a_{., t}\right\}$:
$a_{1,2}$
$a_{1,3}, a_{2,3}$
$a_{1,4}, a_{2,4}, a_{3,4}$
\vdots
$a_{1, n}, a_{2, n}, \ldots, a_{n-1, n}$
$a_{1, n+1}, a_{2, n+1}, \ldots, a_{n, n+1} \Rightarrow S_{n}\left(\pi^{*}\right)=p_{1} \cdot a_{1, n+1}+\cdots+p_{n} \cdot a_{n, n+1}$
- Example: $X_{1} \sim X_{2} \sim X_{3} \sim$ Uniform $[0,1]$

$$
\begin{aligned}
& a_{1,2}=1 / 2 \\
& a_{1,3}=3 / 8, a_{2,3}=5 / 8 \\
& a_{1,4}=39 / 128, a_{2,4}=39 / 128, a_{3,4}=89 / 128 \Rightarrow
\end{aligned}
$$

$$
S_{3}=p_{1} \cdot 39 / 128+p_{2} \cdot 1 / 2+p_{3} \cdot 89 / 128
$$

Part 2: Sequential Stochastic Assignment Problem with Random Number of Jobs

Problem (AP2)

- Let N be a positive integer-valued random variable with known distribution $\gamma=\left\{\gamma_{k}\right\}, \gamma_{k}=\mathrm{P}(N=k), k=1, \ldots, N_{\text {max }}$, where $N_{\text {max }}$ can be infinite.
- Let Y_{1}, Y_{2}, \ldots be an infinite sequence of integrable independent random variables with distributions F_{1}, F_{2}, \ldots, independent of N.
- Given real numbers $p_{1} \leqslant \ldots \leqslant p_{N_{\max }}$ the objective is to maximize the expected total reward

$$
S_{\gamma}(\pi)=\mathrm{E} \sum_{t=1}^{N} p_{\pi_{t}} Y_{t}
$$

over all policies $\pi \in \Pi(\mathscr{Y})$.

Random Number of Jobs

- Theorem: ${ }^{\text {a }}$
- In Problem (AP2) assume that $N_{\max }<\infty$ and let

$$
\tilde{Y}_{t}:=Y_{t} \sum_{k=t}^{N_{\max }} \gamma_{k}, t=1, \ldots, N_{\max }
$$

- For any $\pi \in \Pi(\mathscr{Y})$ one has

$$
S_{\gamma}(\pi)=\mathrm{E} \sum_{t=1}^{N_{\max }} p_{\pi_{t}} \tilde{Y}_{t}
$$

and the optimal policy in Problem (AP2) coincides with the optimal policy in Problem (AP1) associated with fixed horizon $n=N_{\max }$ and job sizes $\tilde{Y}_{1}, \ldots, \tilde{Y}_{N_{\max }}$.

[^2]
Proof

- For any $\pi \in \Pi(\mathscr{Y})$ we have

$$
S_{\gamma}(\pi)=\mathrm{E} \sum_{t=1}^{N} p_{\pi_{t}} Y_{t}=\sum_{t=1}^{N_{\max }} \mathrm{E}\left[p_{\pi_{t}} Y_{t} \mathbf{1}(N \geqslant t)\right]
$$

- and

$$
\begin{aligned}
& \mathrm{E}\left[p_{\pi_{t}} Y_{t} \mathbf{1}(N \geqslant t)\right]=\mathrm{E} \sum_{k=t}^{N_{\max }} \mathrm{E}\left\{\left[p_{\pi_{t}} Y_{t} \mathbf{1}(N=k)\right] \mid \mathscr{Y}_{t}\right\}=\mathrm{E}\left\{p_{\pi_{t}} Y_{t} \sum_{k=t}^{N_{\max }} \gamma_{k}\right\} \\
& =\mathrm{E}\left\{p_{\pi_{t}} \tilde{Y}_{t}\right\}
\end{aligned}
$$

where we have used the fact that π_{t} is \mathscr{Y}_{t}-measurable, and N is independent of \mathscr{Y}_{t}.

- Therefore $\mathrm{E} \sum_{t=1}^{N} p_{\pi_{t}} Y_{t}=\mathrm{E} \sum_{t=1}^{N_{\max }} p_{\pi_{t}} \tilde{Y}_{t}$.
- Note that \tilde{Y}_{t} are independent random variables, and σ-fields $\tilde{\mathscr{Y}}_{t}$ and \mathscr{Y}_{t} are identical. This implies the stated result.

Part 3: Selecting one of the k Best Values with Random Number of Alternatives

Sequential Selection Problems

- Let X_{1}, X_{2}, \ldots be an infinite sequence of independent identically distributed continuous random variables defined on a probability space $(\Omega, \mathscr{F}, \mathrm{P})$.

$$
R_{t}:=\sum_{j=1}^{t} \mathbf{1}\left(X_{t} \leqslant X_{j}\right), \quad A_{t, n}:=\sum_{j=1}^{n} \mathbf{1}\left(X_{t} \leqslant X_{j}\right), \quad t=1, \ldots, n
$$

- Let $\mathscr{R}_{t}:=\sigma\left(R_{1}, \ldots, R_{t}\right)$ and $\mathscr{X}_{t}:=\sigma\left(X_{1}, \ldots, X_{t}\right)$ denote the σ-fields generated by R_{1}, \ldots, R_{t} and X_{1}, \ldots, X_{t}
- $\mathscr{R}=\left(\mathscr{R}_{t}, 1 \leqslant t \leqslant n\right)$ and $\mathscr{X}=\left(\mathscr{X}_{t}, 1 \leqslant t \leqslant n\right)$ are the corresponding filtrations.
- The class of all stopping times of a filtration $\mathscr{Y}=\left(\mathscr{Y}_{t}, 1 \leqslant t \leqslant n\right)$ will be denoted $\mathscr{T}(\mathscr{Y})$; i.e., $\tau \in \mathscr{T}(\mathscr{Y})$ if $\{\tau=t\} \in \mathscr{Y}_{t}$ for all $1 \leqslant t \leqslant n$.

Average Reward

- Fixed n : Problem (A1): Let n be a fixed positive integer, and let $q:\{1,2, \ldots, n\} \rightarrow \mathbb{R}$ be a reward function. The average reward of a stopping rule $\tau \in \mathscr{T}(\mathscr{R})$ is $V_{n}(q ; \tau):=\mathrm{E} q\left(A_{\tau, n}\right)$, and we want to find the rule $\tau_{*} \in \mathscr{T}(\mathscr{R})$ such that

$$
V_{n}^{*}(q):=\max _{\tau \in \mathscr{T}(\mathscr{R})} V_{n}(q ; \tau)=\mathrm{E} q\left(A_{\tau_{*}, n}\right) .
$$

- Random N: Problem (A2): $\gamma_{k}=\mathrm{P}(N=k), k=1,2, \ldots, N_{\max }$, $N \perp\left\{X_{t}, t \geqslant 1\right\}$. Let $q:\left\{1,2, \ldots, N_{\max }\right\} \rightarrow \mathbb{R}$.

$$
V_{\gamma}(q ; \tau):=\mathrm{E}\left[q\left(A_{\tau, N}\right) \mathbf{1}(\tau \leqslant N)\right]
$$

We want to find the stopping rule $\tau_{*} \in \mathscr{T}(\mathscr{R})$ such that

$$
V_{\gamma}^{*}(q):=\max _{\tau \in \mathscr{T}(\mathscr{R})} V_{\gamma}(q ; \tau)=V_{\gamma}\left(q ; \tau_{*}\right) .
$$

Fixed n: Gusein-Zade Stopping Problem ${ }^{\text {a }}$

- Selecting One of the k Best Values: $q(a)=q_{\mathrm{gz}}^{(k)}(a):=\mathbf{1}\{a \leqslant k\}$, and the problem is to maximize $\mathrm{P}\left\{A_{\tau, n} \leqslant k\right\}$ with respect to $\tau \in \mathscr{T}(\mathscr{R})$.
- The optimal policy: is determined by k natural numbers

$$
1 \leqslant \pi_{1} \leqslant \pi_{2} \leqslant \cdots \leqslant \pi_{k}
$$

and proceeds as follows: pass the first $\pi_{1}-1$ observations and among the subsequent $\pi_{1}, \pi_{1}+1, \ldots, \pi_{2}-1$ choose the first best observation; if it does not exists then among the set of observations $\pi_{2}, \pi_{2}+1, \ldots, \pi_{3}-1$ choose one of the two best, etc.

- Example ($\mathrm{n}=30, \mathrm{k}=3$): $\pi_{1}=11, \pi_{2}=18, \pi_{3}=24$ and

[^3]$$
\max _{\tau \in \mathscr{T}(\mathscr{R})} \mathrm{P}\left\{A_{\tau, 30} \leqslant 3\right\}=0.73492 .
$$

An Auxiliary Optimal Stopping Problem: Problem (B)

- Let Y_{1}, \ldots, Y_{n} be a sequence of integrable independent real-valued random variables with corresponding distributions F_{1}, \ldots, F_{n}.
- For a stopping rule $\tau \in \mathscr{T}(\mathscr{Y})$ define $W_{n}(\tau):=\mathrm{E} Y_{\tau}$. The objective is to find the stopping rule $\tau_{*} \in \mathscr{T}(\mathscr{Y})$ such that

$$
W_{n}^{*}:=\max _{\tau \in \mathscr{T}(\mathscr{Y})} \mathrm{E} Y_{\tau}=W_{n}\left(\tau_{*}\right)=\mathrm{E} Y_{\tau_{*}} .
$$

DLR (1972) Solution of Problem (B)

- Consider Problem (AP1) with $p_{1}=0, p_{2}=0, \ldots, p_{n}=1$ and by Theorem (DLR, 1972), at step t the optimal policy assign p_{n} to the job Y_{t} only if $Y_{t}>a_{n-t, n-(t-1)}$ and \cdots
- Let $\left\{b_{t}, t \geqslant 1\right\}$ be the sequence of real numbers defined recursively by

$$
\begin{aligned}
& * b_{1}=-\infty, \quad b_{2}=\mathrm{E} Y_{n} \\
& * \quad b_{t+1}=\int_{b_{t}}^{\infty} z \mathrm{~d} F_{n-t+1}(z)+b_{t} F_{n-t+1}\left(b_{t}\right), \quad t=2, \ldots, n .
\end{aligned}
$$

- Let

$$
\tau_{*}=\min \left\{1 \leqslant t \leqslant n: Y_{t}>b_{n-t+1}\right\}
$$

then

$$
W_{n}^{*}=\mathrm{E} Y_{\tau_{*}}=\max _{\tau \in \mathscr{T}(\mathscr{\mathscr { V }})} \mathrm{E} Y_{\tau}=b_{n+1} .
$$

Reduction: Problems (A1) \Rightarrow Problem (B)

- Fixed Horizon n

Let

$$
\begin{equation*}
I_{t, n}(r):=\sum_{a=r}^{n-t+r} q(a) \frac{\binom{a-1}{r-1}\binom{n-a}{t-r}}{\binom{n}{t}}=\mathrm{E}\left\{q\left(A_{t, n}\right) \mid R_{t}=r\right\}, \quad r=1, \ldots, t \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
Y_{t}:=I_{t, n}\left(R_{t}\right), \quad t=1, \ldots, n \tag{2}
\end{equation*}
$$

- Theorem: the optimal stopping rule τ_{*} solving Problem (B) with random variables $\left\{Y_{t}\right\}$ given in (1)-(2) also solves Problem (A1):

$$
V_{n}\left(q ; \tau_{*}\right)=\max _{\tau \in \mathscr{T}(\mathscr{R})} \mathrm{E} q\left(A_{\tau, n}\right)=\max _{\tau \in \mathscr{T}(\mathscr{Y})} \mathrm{E} Y_{\tau} .
$$

Proof

* First we note that for any stopping rule $\tau \in \mathscr{T}(\mathscr{R})$ one has

$$
\mathrm{E} q\left(A_{\tau, n}\right)=\mathrm{E} Y_{\tau}, \text { where } Y_{t}:=\mathrm{E}\left[q\left(A_{t, n}\right) \mid \mathscr{R}_{t}\right]
$$

*

$$
\begin{aligned}
\mathrm{E} q\left(A_{\tau, n}\right) & =\sum_{k=1}^{n} \mathrm{E} q\left(A_{\tau, n}\right) \mathbf{1}\{\tau=k\}=\sum_{k=1}^{n} \mathrm{E} q\left(A_{k, n}\right) \mathbf{1}\{\tau=k\} \\
& =\sum_{k=1}^{n} \mathrm{E}\left[\mathbf{1}\{\tau=k\} \mathrm{E}\left\{q\left(A_{k, n}\right) \mid \mathscr{R}_{k}\right\}\right]=\sum_{k=1}^{n} \mathrm{E}\left[\mathbf{1}\{\tau=k\} Y_{k}\right]=\mathrm{E} Y_{\tau}
\end{aligned}
$$

where we have used the fact that $\{\tau=k\} \in \mathscr{R}_{k}$. This implies that $\max _{\tau \in \mathscr{T}(\mathscr{R})} \mathrm{E} q\left(A_{\tau, n}\right)=\max _{\tau \in \mathscr{T}(\mathscr{R})} \mathrm{E} Y_{\tau}$.

* To prove the theorem it suffices to show only that

$$
\begin{equation*}
\max _{\tau \in \mathscr{T}(\mathscr{R})} \mathrm{E} Y_{\tau}=\max _{\tau \in \mathscr{T}(\mathscr{Y})} \mathrm{E} Y_{\tau} \tag{3}
\end{equation*}
$$

Proof (Con't)

* Clearly,

$$
\begin{equation*}
\mathscr{Y}_{t} \subset \mathscr{R}_{t}, \quad \forall 1 \leqslant t \leqslant n . \tag{4}
\end{equation*}
$$

* Because R_{1}, \ldots, R_{n} are independent random variables, and $Y_{t}=I_{t, n}\left(R_{t}\right), \forall t$ we have that for any $s, t \in\{1, \ldots, n\}$ with $s<t$

$$
\begin{equation*}
\mathrm{P}\left\{G_{t} \mid \mathscr{Y}_{s}\right\}=\mathrm{P}\left\{G_{t} \mid \mathscr{R}_{s}\right\}, \quad \forall G_{t} \in \mathscr{Y}_{t} . \tag{5}
\end{equation*}
$$

* The statement (3) follows from (4), (5) and Theorem 5.3. a This concludes the proof.

[^4]
Numerical Values

n	k	$P(n, k)$	$E(n, k) / n$	n	k	$P(n, k)$	$E(n, k) / n$
	2	0.57956	0.68645	1,000	2	0.57417	0.68966
	5	0.86917	0.60871		5	0.86123	0.60988
	10	0.98140	0.54236		10	0.97703	0.54434
	15	0.99755	0.50428		15	0.99609	0.50893
	2	0.57363	0.68927	50,000	2	0.57358	0.68923
	5	0.86043	0.61014		5	0.86036	0.61018
	10	0.97658	0.54496		10	0.97654	0.54500
	15	0.99592	0.50947		15	0.99591	0.50950

Table 1: Optimal probabilities $P(n, k)$ and the normalized expected time elapsed until stopping $E(n, k) / n$ for selecting one of the k best values.

Optimal Strategy for $n=30, k=3$

$$
V_{n}^{*}(q)=0.73492
$$

Reduction: Problems (A2) \Rightarrow Problem (B)

- Random Horizon

Let

$$
\begin{equation*}
J_{t}(r):=\sum_{k=t}^{N_{\max }} \gamma_{k} I_{t, k}(r), \quad r=1, \ldots, t . \tag{6}
\end{equation*}
$$

Define

$$
\begin{equation*}
Y_{t}:=J_{t}\left(R_{t}\right)=\sum_{k=t}^{N_{\max }} \gamma_{k} I_{t, k}\left(R_{t}\right), \quad t=1, \ldots, N_{\max } . \tag{7}
\end{equation*}
$$

- Theorem: let $N_{\max }<\infty$; then the optimal stopping rule τ_{*} solving Problem (B) with fixed horizon $N_{\text {max }}$ and random variables $\left\{Y_{t}\right\}$ given in (6)-(7) provides the optimal solution to Problem (A2):

$$
V_{\gamma}^{*}(q)=\max _{\tau \in \mathscr{T}(\mathscr{R})} V_{\gamma}(q ; \tau)=\max _{\tau \in \mathscr{T}(\mathscr{\mathscr { Y }})} \mathrm{E} Y_{\tau}=W_{N_{\max }}\left(\tau^{*}\right)
$$

Proof

* In Problem (A2) the reward for stopping at time t is

$$
\tilde{q}\left(A_{t, N}\right)=q\left(A_{t, N}\right) \mathbf{1}\{N \geqslant t\} .
$$

$$
\begin{align*}
& \mathrm{E}\left\{q\left(A_{t, N}\right) \mathbf{1}\{N \geqslant t\} \mid R_{1}=r_{1}, \ldots, R_{t-1}=r_{t-1}, R_{t}=r\right\} \\
& =\sum_{k=t}^{N_{\text {max }}} \mathrm{E}\left\{q\left(A_{t, N}\right) \mathbf{1}\{N=k\} \mid R_{1}=r_{1}, \ldots, R_{t-1}=r_{t-1}, R_{t}=r\right\} \\
& =\sum_{k=t}^{N_{\text {max }}} \mathrm{E}\left\{\mathbf{1}\{N=k\} \mathrm{E}\left[q\left(A_{t, k}\right) \mid N=k, R_{t}=r\right]\right\} \\
& =\sum_{k=t}^{N_{\max }} \gamma_{k} \sum_{a=r}^{k-t+r} q(a) \frac{\binom{a-1}{r-1}\binom{k-a}{t-r}}{\binom{k}{t}}=\sum_{k=t}^{N_{\text {max }}} \gamma_{k} I_{t, k}(r)=: J_{t}(r) . \tag{8}
\end{align*}
$$

* Together with (7) this implies that $\mathrm{E} \tilde{q}\left(A_{\tau, N}\right)=\mathrm{E} J_{\tau}\left(R_{\tau}\right)=\mathrm{E} Y_{\tau}$ for any $\tau \in \mathscr{T}(\mathscr{R})$. The remainder of the proof proceeds along the lines of the proof of Theorem for fixed horizon n.

Optimal Strategy for $N \sim \operatorname{Uniform}\{1,2, \ldots, 30\}, k=3$

Concluding Remarks

- The proposed framework is applicable to sequential selection problems that can be reduced to settings with independent observations and additive reward function. In particular:
- selection problems with no-information, rank-dependent rewards and fixed or random horizon,
- selection problems with full information when the random variables $\left\{X_{t}\right\}$ are observable, and the reward for stopping at time t is a function of the current observation X_{t} only,
- multiple choice problems with random horizon and additive reward.

Concluding Remarks (con't)

- The proposed framework is not applicable to the following sequential selection problems:
- for instance, settings with rank-dependent reward and full information as in Gnedin (2007) a cannot be reduced to optimal stopping of a sequence of independent random variables
- multiple choice problem with zero-one reward, where the problem of maximizing the probability of selecting k best alternatives; see, e.g., Rose (1982) b where the problem of maximizing the probability of selecting k best alternatives was considered.

[^5]Thank You!

[^0]: ${ }^{\text {a }}$ Derman, Lieberman \& Ross (1972). A sequential stochastic assignment problem. Management Science, 18, 349-355.

[^1]: ${ }^{\text {a }}$ Albright, S. C., Jr. (1972). Stochastic sequential assignment problems. Technical report, 147, Stanford University.

[^2]: ${ }^{\text {a }}$ Goldenshluger, A., Malinovsky, Y., Zeevi, A. (2019). A Unified Approach for Solving Sequential Selection Problems. arXiv:1901.04183.

[^3]: ${ }^{\text {a }}$ Gusein-Zade, S. M. (1966). The problem of choice and the optimal stopping rule for a sequence of independent trials. Theory Probab. Appl., 11, 472-476.

[^4]: ${ }^{\text {a }}$ Chow, Y. S., Robbins, H. and Siegmung, D. (1971). Great Expectations: The Theory of Optimal Stopping. Houghton Mifflin Company, Boston.

[^5]: ${ }^{\text {a }}$ Gnedin, A. V. (2007). Optimal stopping with rank-dependent loss. J. Appl. Probab., 44, 996-1011.
 $\mathrm{b}_{\text {Rose, J. S. (1972). A problem of optimal choice and assignment. Oper. Res., 30, 172-181. }}$

