Adaptive Latent Modeling and Optimization via Neural Networks and Langevin Diffusion

Yixuan Qiu¹ Xiao Wang² The 36th QPRC, 2019

¹Department of Statistics, Carnegie Mellon University

²Department of Statistics, Purdue University

Adaptive Latent Modeling and Optimization via Neural Networks and Langevin Diffusion

(Image: http://dreamicus.com/data/almond/almond-05.jpg)

Motivation

The ALMOND Framework

Numerical Experiments

Motivation

• A general and powerful way to modeling complicated data distribution

$$f(x_1,\ldots,x_n)=\prod_{i=1}^n f(x_i), \quad f(x_i)=\int f(x_i|u_i)\pi(u_i)\mathrm{d} u_i$$

- Observed data points $X_i \in \mathbb{R}^p$
- Unobserved latent variables $U_i \in \mathbb{R}^d$
- Marginal latent distribution $\pi(u)$
- Latent-to-data distribution f(x|u)

Diagram for Latent Variable Model

Hierarchical Bayesian models

$$X_i | \mu_i \sim N(\mu_i, \sigma_i^2), \quad \mu_i \stackrel{iid}{\sim} N(\mu_0, \tau_0^2)$$

(Generalized) Linear mixed models

$$\begin{aligned} Y_i &= W_i\beta + Z_ib_i + \varepsilon_i \iff Y_i|b_i \sim N(W_i\beta + Z_ib_i, \Sigma_i) \\ b_i \stackrel{iid}{\sim} N(0, D) \end{aligned}$$

Gaussian mixture models

$$X_i | \{U_i = c\} \sim N(\mu_c, \Sigma_c), \quad P(U_i = c) = \pi_c$$

- Bayesian inference (Gelman et al., 2014)
 - Based on the posterior distribution $p(u_i|x_i) = f(x_i|u_i)\pi(u_i)/f(x_i)$
 - Typically computed using Markov chain Monte Carlo (MCMC, Gilks, Richardson, and Spiegelhalter, 1995)
 - Pro: Widely used in real applications
 - Pro: Elegant and well-developed statistical properties
 - **Con**: Requires fully known $\pi(u)$ and f(x|u)
 - **Con**: High computational cost with MCMC; nontrivial to scale to large data sets

- The expectation-maximization algorithm (EM, Dempster, Laird, and Rubin, 1977)
 - Latent variables as "missing data"
 - Computes the maximum likelihood estimator (MLE) for θ
 - Pro: Allows for unknown parameters in π(u) and f(x|u), thus bringing more flexibility in modeling
 - Con: Mostly used for point estimation
 - Con: E-step does not have closed form for complicated models
 - Con: M-step is also challenging for big data

- Variational inference (Jordan et al., 1999; Blei, Kucukelbir, and McAuliffe, 2017)
 - An alternative approach for large-scale Bayesian inference
 - Approximates the true posterior using a simpler distribution
 - Pro: Very efficient in computation
 - Pro: Easy to scale to large data sets
 - Con: Lack of accuracy in the inference result

	Ease of Modeling	Efficiency of Computation	Accuracy of Inference
Bayesian Inference	☆☆ ☆	☆☆ ☆	☆☆☆
EM Algorithm	☆☆☆	☆☆☆/☆☆☆ Highly depends on the model	☆☆☆
Variational Inference	☆☆☆	☆☆☆	☆☆ ☆

The ALMOND Framework

- A flexible and data-driven specification of the latent variable distribution π(u) via neural networks
- The latent-to-data distribution $f_{\theta}(x|u)$ can also contain unknown parameters θ
- An efficient computational method based on:
 - Stochastic gradient methods (Robbins and Monro, 1951; Bottou et al., 2018)
 - The Langevin sampling algorithm (Roberts et al., 1996; Roberts and Stramer, 2002; Dalalyan, 2017)
- Theoretical guarantees on the convergence of the algorithm

• Input

- Observed data points X_1, X_2, \ldots, X_n
- Latent-to-data distribution $f_{\theta}(x|u)$ up to an unknown parameter vector θ
- Output
 - Estimated latent variable distribution $\hat{\pi}(u)$
 - Estimate of θ : $\hat{\theta}$
 - Conditional distribution of the latent variable given the data $p(u_i|x_i)$

Modeling: Adaptive Latent Variable Distribution

- π(u) controls the expressive power of the marginal data distribution f(x) = ∫ f(x|u)π(u)du
- We specify an adaptive π(u) through a probability transformation U_i = h_η(Z_i)
- $Z_i \in \mathbb{R}^r$ follows a known distribution, e.g. $N(0, I_r)$
- $h_{\eta} : \mathbb{R}^r \mapsto \mathbb{R}^d$ is represented by a deep neural network (DNN), where η contains the network parameters
- $\hat{\pi}(u) \Leftrightarrow h_{\hat{\eta}}$

Computation: Challenges and Solutions

- η and θ can be estimated by maximizing the log-likelihood function $\ell(\theta, \eta; x) \equiv \log[f(x)]$
- However, $f(x) = \int f(x|u)\pi(u)du$ involves a potentially high-dimensional integration
- A direct optimization over η and θ is intractable
- Our method
 - First, obtain a rudimentary estimation for unknown quantities using the efficient variational autoencoder framework (VAE, Kingma and Welling, 2013)
 - Then proceeds with a bias correction procedure to achieve a high accuracy of the inference results
 - Combines the efficiency of VAE and the accuracy of EM algorithm

• For any distribution q(z|x),

 $\ell(\beta; x) \geq \mathcal{L}(\beta; q, x) \coloneqq \mathbb{E}_{z \sim q(z|x)} \left[\log f_{\beta}(x|z) \right] - \mathcal{D} \left[q(z|x) \| \pi_0(z) \right]$

•
$$f_{\beta}(x|z) \coloneqq f_{\theta}(x|h_{\eta}(z)), \ \beta = (\theta, \eta)$$

- $\mathcal{D}[q\|p]$ is the Kullback–Leibler divergence from p to q
- Instead of maximizing $\ell(x)$, VAE does the following
 - Choose q(z|x) to be $N(\mu_{\phi}(x), \operatorname{diag}(\sigma_{\phi}^2(x)))$
 - $\mu_{\phi}(\cdot)$ and $\sigma^2_{\phi}(\cdot)$ are DNNs with parameter ϕ
 - Optimizes $\mathcal{L}(eta; q_{\phi}, x)$ over the parameters eta and ϕ

The New Method

- VAE is fast, but biased, even with an infinite sample size
- It has the wrong target: a lower bound instead of $\ell(\beta; x)$
- We propose a new method that targets on the true $\ell(\beta; x)$
- Define

$$\mathcal{L}(\beta, \tilde{\beta}; x) = \int \log \left[\frac{f_{\beta}(x|z)\pi_{0}(z)}{p_{\tilde{\beta}}(z|x)} \right] p_{\tilde{\beta}}(z|x) dz$$

- When $\tilde{\beta} = \beta$, we have $\mathcal{L}(\beta, \beta; x) = \ell(\beta; x)$
- The quantity g(β, β̃; x) = ∂L(β, β̃; x)/∂β is similar to a gradient when β̃ = β
- We iteratively update the parameter estimate β_t :

$$\beta_{t+1} = \beta_t + \alpha_t \cdot \tilde{g}(\beta_t; x, W_t)$$

• $\tilde{g}(\beta_t; x, W_t)$ is a stochastic approximation to $g(\beta_t, \beta_t; x)$

The Langevin Algorithm

- Define $G(\beta; x, z) = \partial \log[f_{\beta}(x|z)]/\partial\beta$, then $g(\beta_t, \beta_t; x) = \mathbb{E}_{z \sim p_{\beta_t}(z|x)}G(\beta_t; x, z)$
- We want to obtain a sequence of random vectors $W_t^{(1)}, \ldots, W_t^{(M_t)}$ such that

$$\tilde{g}(\beta_t; x, W_t) = \frac{1}{M_t} \sum_{i=1}^{M_t} G(\beta_t; x, W_t^{(i)}) \approx g(\beta_t, \beta_t; x)$$

• The Langevin algorithm is simple and easy to compute:

$$W_t^{(k)} = W_t^{(k-1)} + \gamma_t \cdot v_t(W_t^{(k-1)}) + \sqrt{2\gamma_t} \cdot \xi_t^{(k)}$$

where γ_t is the step size, $v_t(z) = \partial \log[f_{\beta_t}(x|z)\pi_0(z)]/\partial z$, and $\xi_t^{(k)} \stackrel{iid}{\sim} N(0, I_r)$

Theorem

Under regularity conditions, for every $t \in \mathbb{N}$ and any $0 < \varepsilon_t < 1$, there exists a constant $C_t > 0$ such that whenever $\gamma_t \leq C_t \varepsilon_t$ and $M_t \geq \gamma_t^{-2}$, we have

$$\begin{aligned} \|\mathbb{E}_{W_t}[\tilde{g}(\beta_t; x, W_t)] - g(\beta_t, \beta_t; x)\| &\leq \varepsilon_t \\ \mathbb{E}_{W_t}\left[\|\tilde{g}(\beta_t; x, W_t)] - g(\beta_t, \beta_t; x)\|^2\right] &\leq \varepsilon_t \end{aligned}$$

- It shows that $\tilde{g}(\beta_t; x, W_t)$ is a biased estimator for $g(\beta_t, \beta_t; x)$
- But we can control its bias to any small number ε_t

Theorem

Under regularity conditions, let $\{\alpha_t\}$ and $\{\varepsilon_t\}$ be two positive and decreasing sequences such that $\sum_{t=1}^{\infty} \alpha_t = \infty$, $\sum_{t=1}^{\infty} \alpha_t^2 < \infty$, and $\sum_{t=1}^{\infty} \alpha_t \varepsilon_t^2 < \infty$, then we have

$$\liminf_{t\to\infty} E\left[\|g(\beta_t,\beta_t;x)\|^2\right] = 0.$$

In particular, the above conditions hold if $\alpha_t \simeq O(t^{-1})$ and $\varepsilon_t = O(t^{-c})$ for any c > 0.

Moreover, if there exists a β^* such that $||g(\beta^*, \beta^*; x)|| = 0$, then $\partial \ell(\beta; x) / \partial \beta|_{\beta = \beta^*} = 0$.

Numerical Experiments

- $U_i \stackrel{iid}{\sim} \pi(u), X_i | \{ U_i = u \} \sim N(\mu, 1), i = 1, 2, \dots, 1000$
- Three true latent distributions

•
$$\pi = N(1, 0.5^2)$$

•
$$\pi = Exp(2)$$
, mean = 2

•
$$\pi = 0.4 \cdot N(0, 0.5^2) + 0.6 \cdot N(3, 0.5^2)$$

• Compare empirical Bayes, variational inferene, and ALMOND

Result

- $P(U_1 \le u_1, \ldots, U_{10} \le u_{10}) = C(F(u_1), \ldots, F(u_{10})),$ $X | \{U = u\} \sim N(u, I_{10})$
- F(u) is the c.d.f. of Gamma(2)
- $C(u_1,...,u_{10}) = \varphi^{-1}(\varphi(u_1) + \cdots + \varphi(u_{10})), \ \varphi = t^{-2} 1$
- Study the estimates of F(u) and $\lambda(t) = \varphi(t)/\varphi'(t)$
- Compare empirical Bayes, variational inferene, and ALMOND

Result

- The well-known MNIST handwritten digits data
- Use Z ~ N(0, I₂) to represent the low-dimensional latent space
- Compute the latent coordinates E(Z|X = x) for nonlinear dimensionality reduction

Result

- Left: Dimensionality reduction by ALMOND
- Right: Dimensionality reduction by PCA

