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Presentation outline

1. Swine survey at NASS

2. Swine industry characterization

3. Inventory equations

4. Case study

5. Conclusion
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Swine survey at NASS

NASS conducts quarterly surveys to evaluate status of US swine
industry

Reported quantities over previous three months:

I Monthly pig crop

I Monthly sows farrowed

Reported inventories at the first day of the surveyed quarter:

I Breeding herd
I Market hogs distinct in weight groups:

1. Less than 50 lbs
2. 50-119 lbs
3. 120-179 lbs
4. More than 180 lbs
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Pros and cons of current modeling approaches

Constrained Kalman filter model

I Reliable during periods of equilibrium

I Too rigid during periods of shocks

Sequential generalized linear models

I Very flexible

I Ignoring biological constraints
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Objectives of the new model

1. Satisfy constraints without forcing them

2. Produce stable estimates during equilibrium periods

3. Flexibile formulation to quickly adapt estimates during shocks

4. Predict national inventories at a finer temporal resolution
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Swine population dynamics
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Breeding dynamics {
z1,t = ρt z2,t

z2,t = ϕ y7,t−2 + ε2,t

z1,t monthly pig-crop at time t

z2,t monthly sows farrowed at time t

y7,t−2 size of breeding herd (inventory) at time t − 2

ρt piglets per sows at time t

ϕ breeding/farrowing rate

ε2,t error in modeling sows farrowed

y7,t = ϕ−1 (z2,t+2 + ε2,t+2)
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Time series models

Account for trend, seasonality, and auto-correlations

Dynamics of logarithms of pig crop and sows farrowed are modeled
by SARIMA model (Box et al., 2015)

The model choice for log(z1,t) and log(z2,t) is

SARIMA(2, 1, 2) × (2, 1, 2)12

Model fitting via LASSO (Tibshirani, 1996) for automatic selection
of a sub-model
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Inventory equations


y3,t = ζt−1 z1,t−1 + ζt−2 z1,t−2 + ζt−3 α1 z1,t−3 + ε3,t ,

y4,t = ζt−3 (1 − α1) z1,t−3 + ζt−4 z1,t−4 + ζt−5 α2 z1,t−5 + ε4,t ,

y5,t = ζt−5 (1 − α2) z1,t−5 + ζt−6 α3 z1,t−6 + ε5,t ,

y6,t = ζt−6 (1 − α3) z1,t−6 + ζt−7 α4 z1,t−7 + ε6,t ,

z1,t monthly pig-crop at time t

y2+i ,t market hogs , for weight group i = 1, . . . , 4

ε2+i ,t errors in modeling market hogs

αi projection parameters, for i = 1, . . . , 4

ζt survival rates at time t
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Inventory equations (cartoon interpretation)
Death rates and allocation percentages are not realistic!
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Case study

Historical estimates from 2008 are combined with survey data up
to 2017

The proposed model (SWARCS) and the Kalman filter (KFM) are
both used to estimate inventory numbers between 2013 and 2017

The results from the two models are compared against

I Final estimates1 (NASS USDA, 2019)

I Root mean squared error (RMSE) as selection criterion

1https://downloads.usda.library.cornell.edu/usda-esmis/files/

jd472w45t/h128nn160/m613n493n/hgpgsb19.pdf
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Model comparisons via RMSE

Total Hogs

Breeding Herd

Total Mkt Hogs

Mkt <50 lbs

Mkt 50−119 lbs

Mkt 120−179 lbs

Mkt >180 lbs

Sows Farrowed

Pig Crop

SWARCS
KFM

Hogs

0 200 400 600 800 1000 1200

QPRC 2019 – Applications of data science in diverse fields – Luca Sartore 13

mailto:lsartore@niss.org


Conclusion

For the new model

1. Biological dynamics are satisfied without forcing constraints

2. Stable estimates are produced by a flexible formulation of
survival rates

3. Estimates can be produced on a monthly basis at US level

Future work

I Improving breeding herd estimates

I Modeling spatial relationships among states
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Mashreghi, Z., Haziza, D., and Léger, C. (2016). A survey of bootstrap methods in finite population sampling.
Statistics Surveys, 10:1–52.

Mikesell, R. and Baker, M. (2010). Animal Science Biology and Technology. Cengage Learning.

NASS (2005). Estimation manual volume 4: livestock and dairy. Unpublished internal document, United States
Department of Agriculture NASS.

Park, H. and Oh, S. (2017). Seasonal variation in growth of berkshire pigs in alternative production systems.
Asian-Australasian Journal of Animal Sciences, 30(5):749–754.

QPRC 2019 – Applications of data science in diverse fields – Luca Sartore 16

mailto:lsartore@niss.org


Selected References III

Park, H., Spann, K., Whitley, N., and Oh, S. (2017). Comparison of growth performance of berkshire purebreds
and crossbreds sired by hereford and tamworth breeds raised in alternative production system.
Asian-Australasian Journal of Animal Sciences, 30(9):1358–1362.

Pollard, J. (1966). On the use of the direct matrix product in analysing certain stochastic population models.
Biometrika, 53(3-4):397–415.

Roberts, S. and Nowak, G. (2014). Stabilizing the lasso against cross-validation variability. Computational
Statistics & Data Analysis, 70:198–211.

Rumelhart, D., Hinton, G., and Williams, R. (1985). Learning internal representations by error propagation.
Technical report, California University San Diego, La Jolla Institute for Cognitive Science.

Shull, C. (2013). Modeling growth of pigs reared to heavy weights. PhD thesis, University of Illinois at
Urbana-Champaign.

Tang, M., Cape, J., and Priebe, C. (2017). Asymptotically efficient estimators for stochastic blockmodels: the
naive MLE, the rank-constrained MLE, and the spectral. arXiv preprint arXiv:1710.10936.

Thompson, P., Brewer, J., and Brewer, E. (1996). Swine care handbook. National Pork Board, page 34.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:
Series B (Methodological), 58(1):267–288.

Wang, H., Li, G., and Tsai, C.-L. (2007). Regression coefficient and autoregressive order shrinkage and selection
via the lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(1):63–78.

QPRC 2019 – Applications of data science in diverse fields – Luca Sartore 17

mailto:lsartore@niss.org


Thank you!
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Luca Sartore, PhD lsartore@niss.org

Yijun Wei ywei@niss.org

Emilola Abayomi, PhD emilola.abayomi@usda.gov

Seth Riggins seth.riggins@usda.gov

Gavin Corral, PhD gavin.corral@usda.gov

Nell Sedransk, PhD nsedransk@niss.org

QPRC 2019 – Applications of data science in diverse fields – Luca Sartore 18

mailto:lsartore@niss.org

	References

